Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свариваемость тугоплавких металлов и сплавов

СВАРИВАЕМОСТЬ ТУГОПЛАВКИХ МЕТАЛЛОВ И СПЛАВОВ  [c.145]

Свариваемость тугоплавких металлов и сплавов  [c.54]

Диффузионную сварку в большинстве случаев выполняют в вакууме, однако она возможна в атмосфере инертных и защитных газов. Свариваемые заготовки 3 (рис. 5.44) устанавливают внутри охлаждаемой металлической камеры 2, в которой создается вакуум 133(10 . .. 10 ) Па, и нагревают с помощью вольфрамового или молибденового нагревателя либо индуктора ТВЧ 4. Все вводы в камеру (5 - к вакуумному насосу, б - к высокочастотному генератору и др.) хорошо герметизируются. С целью ускорения процесса в камеру может быть введен электронный луч, позволяющий нагревать заготовки с еще более высокими скоростями, чем при использовании ТВЧ. Обычно такой нагрев применяют при диффузионной сварке тугоплавких металлов и сплавов.  [c.268]


Ряд сталей, цветных и тугоплавких металлов и сплавов обладает пониженной свариваемостью, которая проявляется в изменении механических и физикохимических свойств металла в зоне сварного соединения по сравнению с основным металлом и образовании дефектов в виде трещин, пор и т.д.  [c.273]

Установка МПУ-4 предназначена для сварки черных, цветных, легких и тугоплавких металлов и сплавов малых толщин (0,15...1,5 мм) в зависимости от физико-химических свойств свариваемых металлов и типа шва на постоянном и импульсном токах прямой и обратной полярности. Ступенчатая регулировка силы сварочного тока осуществляется переключением катушек трехфазного сварочного трансформатора, плавная — их перемещением.  [c.376]

Металлы VI подгруппы (молибден, вольфрам, хром) и их сплавы по сравнению с другими конструкционными химически активными и тугоплавкими металлами и сплавами имеют наихудшую свариваемость.  [c.156]

Электронно-лучевой сваркой изготовляют детали из тугоплавких химически активных металлов и их сплавов (вольфрамовых, танталовых, ниобиевых, циркониевых, молибденовых и т. п.), а также из алюминиевых и титановых сплавов и высоколегированных сталей. Металлы и сплавы можно сваривать в однородных и разнородных сочетаниях, со значительной разностью толщин, температур плавления и других теплофизических свойств. Минимальная толщина свариваемых заготовок составляет 0,02 мм, максимальная — до 100 мм.  [c.204]

Диффузионной сваркой-изготовляют узлы и детали из различных металлов, сплавов и неметаллических материалов. Композиции свариваемых материалов исключительно разнообразны. В результате накопленного опыта можно сделать вывод, что большинство металлов, таких, как никель, медь, титан и их сплавы, а также стали (в том числе и аустенитного класса) обладают хорошей взаимной свариваемостью. То же можно сказать о тугоплавких металлах — молибдене, вольфраме, тантале, ниобии. Хорошо сваривается молибден со сталью, ниобием. Свариваются неметаллические материалы керамика, стекло, кварц, полупроводники, графит, керметы и металлокерамика с металлами. Сварка чугуна со сталью осуществляется по большой поверхности. Свариваются такие разнородные металлы и сплавы, как титан и медь, титан и ковар, титан и константан, титан и молибден, золото и бронза, серебро и коррозионно-стойкая сталь, титан и платина, молибден и ковар, алюминий и ковар. Качественные соединения перечисленных материалов невозможно получить другими методами сварки и пайки.  [c.42]


Одно из наиболее надежных средств предотвращения образования горячих трещин при сварке — повышение качества свариваемого металла ограничение содержания кремния, бора, фосфора, серы и других примесей в аустенитных сталях и никелевых сплавах [4, с. 141 5 8 9, с. 148], а также примесей внедрения в сплавах тугоплавких металлов. При сварке сплавов из тугоплавких металлов, как и при сварке сплавов титана и циркония, предусматривают эффективные меры защиты металла сварных соединений от насыщения примесями струйная защита инертными газами, сварка в камерах с контролируемой атмосферой, электроннолучевая сварка [9, с. 155 и 156].  [c.73]

Из металлов лишь ниобий и цирконий (а также их сплавы) обладают сравнительно хорошей свариваемостью. Для сварки плавлением тугоплавких металлов, циркония и их сплавов применяют в основном два способа дуговую сварку неплавящимся (вольфрамовым) электродом в среде аргона или гелия на постоянном токе прямой полярности и вакуумную сварку электронным лучом.  [c.170]

Это свойство дуги обратной полярности используют для сварки на переменном токе неплавящимся электродом сплавов на основе алюминия и магния. Поверхность этих металлов покрыта тугоплавкой пленкой окислов и нитридов, которые не расплавляются в процессе сварки и препятствуют оплавлению кромок свариваемых элементов. В те полупериоды, когда изделие является катодом, происходит очистка его поверхности. В следующем полупериоде усиливается расплавление основного металла и уменьшается нагрев вольфрамового электрода.  [c.456]

Одним пз наиболее надежных средств предотвращения образования горячих трещин при сварке яв,няется повышение качества свариваемого металла — ограничение содержания кремния, бора, фосфора, серы и других примесей в аустенитных сталях и никелевых сплавах [3, 4, 5, 9, 10 и примесей внедрения в сплавах тугоплавких металлов. Прч сварке последних, так же как и при сварке сплавов титана и циркония, предусматриваются эффективные меры защиты металла сварных соединений от насыщения примесями струйная защита  [c.27]

Точечную сварку применяют для изготовления изделий из углеродистых и легированных конструкционных, нержавеющих сталей, алюминия, меди и их сплавов, химически активных и тугоплавких металлов при толщине свариваемых деталей от 0,5 до 10 мм.  [c.647]

Наиболее проста и распространена сварка деталей из одного и того же металла. Здесь большинство металлов проявляют достаточно хорошую свариваемость. Но встречаются случаи пониженной свариваемости, где сварное соединение нельзя признать удовлетворительным. Иногда сварка настолько затруднена, что применить ее можно лишь при использовании особых, сложных приемов. Примерами металлов, имеющих пониженную свариваемость, могут служить некоторые высоколегированные стали, закаливающиеся стали, многие чугуны, большинство медно-цинковых сплавов, некоторые тугоплавкие и химически высокоактивные металлы и др. Причинами, затрудняющими сварку, могут быть образование  [c.327]

Кроме молибдена и титана из тугоплавких металлов могут быть использованы еще ниобий, тантал и вольфрам. За последние годы повысился интерес к вольфрамомолибденовым сплавам, упрочнение которых достигается за счет образования твердого раствора. Эти сплавы обладают наибольшей прочностью при высоких температурах, однако они трудно обрабатываются обычными методами. Достоинством тугоплавких ниобиевых и танталовых сплавов по сравнению с вольфрамомолибденовыми является их лучшая деформируемость и свариваемость, а также повышенная пластичность при низких температурах. Благодаря меньшей стоимости и удельному весу ниобиевые сплавы являются более перспективными для применения до температур порядка 1300° С. При более высоких температурах целесообразнее использовать танталовые сплавы, более стойкие к окислению, по сравнению с нелегированными тугоплавкими металлами.  [c.184]


В настоящее время для производства сварных конструкций находят применение широкий круг материалов различные типы сталей, сплавы цветных и тугоплавких металлов, пластмассы, композитные и неметаллические материалы. В перспективе эта тенденция будет усиливаться. Одной из важных проблем сварки становится обеспечение свариваемости многих материалов. Поэтому эти вопросы вынесены в отдельный том справочника.  [c.16]

Трещины возникают на стадии первичной кристаллизации и развиваются при дальнейшем остывании металла. Горячие трещины обусловлены междендритными жидкими прослойками и остаточными напряжениями. В ниобиевых сплавах образование трещин зависит от соотношения концентрации легирующих элементов. Так, при отношении Мо/2г>5 У/2г>5 и (Мо + + У)/2г>10 горячие трещины в швах отсутствуют. Пористость сварных швов из тугоплавких металлов УА группы является весьма распространенным явлением. Поры располагаются преимущественно по линии сплавления и имеют сферическую замкнутую форму. Они не оказывают существенного влияния на герметичность швов и их механические свойства, но могут существенно увеличивать скорость коррозионного растрескивания. Появление пор объясняют присутствием в основном металле активных примесей и реакциями взаимодействия углерода с кислородом или оксидами. Существенное влияние на образование пор оказывают дефекты обработки торцов свариваемых кромок.  [c.415]

Применение приспособлений. Очень часто конфигурация и размеры изделий, свариваемых диффузионной сваркой, не позволяют осуществить процесс соединения свариваемых поверхностей без приспособлений. От того, насколько удачно выбраны конструкция и материал приспособления, зависит качество сварки того или иного узла и производительность установки в целом. В ряде случаев роль приспособлений сводится к фиксации каких-то определенных элементов свариваемого узла в требуемом положении или к компенсации погрешностей изготовления соединяемых поверхностей деталей. Однако, как правило, основное назначение приспособлений — повышение производительности процесса сварки. Приспособления чаще всего изготовляют из жаропрочных сталей и сплавов, керамики или тугоплавких металлов (вольфрама, молибдена и др.), так как при высоких температурах и давлениях детали приспособлений из обычных конструкционных материалов легко деформируются и теряют свои размеры. Обладая жаропрочностью, материал приспособления не должен схватываться с соединяемыми изделиями. Чтобы избежать схватывания деталей приспособления или промежуточных штоков со свариваемыми изделиями, на их контактные поверхности наносят различные обмазки, используют прокладки из слюды. Обычно для этих целей применяют разведенный мел или гидрофобную кремнийорганическую жидкость, которые наносят тонким слоем на контактные поверхности. Эта жидкость, превращаясь при 573 К в тугоплавкую пленку, термостойкость которой выше 1273 К, препятствует диффузии. Применение обмазок, необходимых для защиты от схватывания,  [c.117]

Сварка вольфрама. Вольфрам имеет две модификации — а и . Ниже температуры полиморфного превращения 903 К -фаза переходит в а-фазу с решеткой объемно-центрированного куба. Вольфрам устойчив в соляной, серной и других кислотах, в расплавленных натрии, ртути, висмуте. С азотом и водородом вольфрам не взаимодействует до температуры плавления. На воздухе устойчив до 673 К- Вольфрамовые сплавы содержат в небольших количествах такие легирующие элементы, как ниобий, цирконий, гафний, молибден, тантал, рений, окись тория. Основной целью легирования вольфрама является повышение его пластичности, так как технически чистый вольфрам при 293 К имеет относительное удлинение, близкое к нулю. Среди" тугоплавких металлов вольфрам имеет наиболее высокие следующие параметры температуру плавления, модуль упругости, коэффициент теплопроводности и низкую свариваемость. Для диффузионной сварки вольфрама в вакууме может быть рекомендован режим Т = 2473 К, р 19,6 МПа, /=15 мин, который обеспечивает свойства соединений, близкие к свойствам основного металла.  [c.155]

При диффузионной сварке соединение образуется в ре зультате взаимной диффузии атомов в поверхностных слоях контак тирующих материалов, находящихся в твердом состоянии. Температура нагрева при сварке несколько выше или ниже температурь рекристаллизации более легкоплавкового материала. Диффузионную сварку в большинстве случаев выполняют в вакууме, однако она возможна в атмосфере инертных защитных газов. Свариваемые за готовки 3 (рис. 5.45) устанавливают внутри охлаждаемой металлической камеры 2, в которой создается вакуум 133(l(H-f-10" ) Па, и нагревают с помощью вольфрамового или молибденового нагревателя или индуктора ТВЧ 4 (5 — к вакуум1юму насосу 6 — к высокочастотному генератору).Может быть исиользоваитакже и электронный луч, позволяющий нагревать заготовки с eui,e более высокими скоростями, чем при использовании ТЕ Ч. Электронный луч применяют для нагрева тугоплавких металлов и сплавов. После тогй как достигнута требуемая температура, к заготовкам прикладывают с помощью механического /, гидравлического или пневматического устройства небольшое сжимающее давление (1—20 МПа) в течение 5—20 мин. Такая длительная выдержка увеличивает площадь контакта между предварительно очищенными свариваемыми поверхностями заготовок. Время нагрева определяется родом свариваемого металла, размерами и конфигурациями заготовок.  [c.226]

Установки с электронно-лучевым нагревом. Установка АЗОб-14 предназначена для диффузионной сварки в вакууме деталей и узлов электровакуумных приборов из тугоплавких металлов и сплавов, а также других конструкционных сталей [II, 12]. Установка (рис. 27) состоит из двух частей блока сварки и блока питания. Блок сварки имеет вакуумную камеру 10, откачную систему и систему охлаждения, гидравлическую систему и блок с тремя электронно-оптическими системами 2. Вакуумная камера выполнена цилиндрической формы диаметром 0,49 м и высотой 0,48 м с водяной рубашкой. В камере можно сваривать изделия диаметром до 0,12 м и высотой до 0,18 м. В нижней части се на охлаждаемом упоре установлен блок электроннооптических систем. Приспособление со свариваемыми деталями / устанавливается на нижний упор. К патрубку камеры присоединен высоковаку-умный откачной агрегат. Усилие сжатия на свариваемые детали создается гидравлической системой. Гидроцилиндр установлен сверху камеры.  [c.111]


Для соединения тугоплавких металлов и их сплавов преимущественно применяют сварку плавлением дуговую в инертных газах (в камерах и со струйной защитой), под бескислородным флюсом (для титана), в вакууме электроннолучевую, лазером. Для некоторЬ1х изделий применяют следующие способы сварки давлением диффузионную в вакууме и защитных газах, взрывом, контактную. По свариваемости и технологии сварки тугоплавкие металлы можно разделить на две группы. К первой группе относятся титан, цирконий, ниобий, ванадий, тантал, ко второй — молибден, вольфрам. Металлы и сплавы первой группы обладают хорошей стойкостью к образованию горячих трещин, но склонны к образованию холодных трещин. Склонность этих металлов к холодным трещинам связана с водородом, который охрупчивает металл в результате гидридного превращения при содержании его выше предельной растворимости. Кроме того, охрупчивание металла происходит также при насыщении кислородом, азотом, углеродом и теплофизическом воздействии сварки, вызывающем перегрев, укрупнение зерна и выпадение хрупких фаз.  [c.500]

Большинство пар свариваемых разнородных металлов или сплавов различается температурой плавления, плотностью, температурными коэффициентами линейного расширения, типом решетки и ее параметрами. Тугоплавкие и химически активные титан, ниобий, тантал, молибден при нагреве активно взаимодействуют с азотом и кислородом (при температуре выше 873 К), что ухудшает их свойства. Эти металлы и их сплавы, а также стали необходимо сваривать в вакууме не менее 6,7-10" Па, Медь (бескислородную), ниобий и молибден следует отжигать непосредственно перед сваркой в водороде при 873, 1673 и 1173 К в течение 30, 20 и 10 мин соответственно, а никель НП1 и сплав 29НК при 1123 и 1073 К в течение 15 и 30 мин.  [c.140]

Общие сведения. С развитием новых отраслей техники тугоплавкие металлы и их сплавы благодаря высоким жаропрочности, коррозионной стойкости в ряде агрессивных сред и другим свойствам находят все более широкое применение. К тугоплавким металлам, использующимся для изготовления сварных конструкций, относятся металлы IV, V и VI групп периодической системы Менделеева ниобий, тантал, цирконий, ванадий, титан, молибден, вольфрам и др. Эти металлы и сплавы на их основе обладают рядом общих физико-химических и технологических свойств, основными из которых являются высокие температура плавления, химическая активность в жидком и твердом состоянии при повышенных температурах поотношению к атмосферным газам, чувствительность к термическому воздействию, склонность к охрупчиванию, к интенсивному росту зерна при нагреве выше температуры рекристаллизации. Пластичность сварных соединений тугоплавких металлов, как и самих металлов, в большей мере зависит от содержания примесей внедрения. Растворимость азота, углерода и водорода в тугоплавких металлах показана на рис. 1. Содержание примесей внедрения влияет на технологические свойства тугоплавких металлов и особенно на их свариваемость. Взаимодействие тугоплавких металлов с газами и образование окислов, гидридов и нитридов вызывают резкое охрупчивание металла. Главной задачей металлургии сварки химически активных тугоплавких металлов является обеспечение совершенной защиты металла и минимального содержания в нем вредных примесей. Применение диффузионной сварки в вакууме для соединения тугоплавких металлов и их сплавов является весьма перспективным, так как позволяет использовать наиболее совершенную защиту металла от газов и регулировать термодеформационный цикл сварки в благоприятных для металла пределах.  [c.150]

Ниобиевые сплавы являются перспективным материалом для деталей, работающих при температуре 1000—1500° С умеренный удельный вес, высокая пластичность в горячем и холодном состоянии, хорошая свариваемость, нелетучесть окислов создают ниобию большие преимущества перед молибденом и другими тугоплавкими металлами.  [c.161]

Возможности удешевления самого коррозионностойкого из тугоплавких металлов Та за счет легирования или его полной замены ниобием, достаточно дорогим и дефицитным металлом, бьши рассмотрены в предыдущей главе. Возможно дополнительное легирование ниобия или сплава Nb—Та титаном, однако, к сожалению, для сохранения высокой коррозионной стойкости лишь в небольших количеств Данные, свидетельствующие о высокой коррозионной стойкости молиёйена, бьши приведены также в предьщущей главе. Однако низкая при комнатной температуре пластичность и плохая свариваемость (хрупкость сварного шва) создают определенные препятствия для его массового использования в химическом ма-  [c.91]

Основной трудностью при сварке алюминия является образование на поверхности алюминия тугоплавкой окис-ной пленки А1гОз с температурой плавления 2060° С, которая затрудняет плавление металла и сплавление свариваемых кромок. Другая трудность заключается в том, что при нагреве алюминий не меняет своего цвета и поэтому трудно уловить момент начала его плавления. От сваршика требуется большой навык и опыт по сварке алюминия и его сплавов.  [c.92]

Сварка алюминиевых и магниевых сплавов. При сварке алюминиевых (АМг5, АМгб, Д20 и др.) и магниевых <МА1, МА8, МА2-1 и др.) сплавов возникает ряд особенностей металлургического процесса, вызванных физико-химическими свойствами алюминия и магния. Наличие на поверхности свариваемого металла и проволоки тугоплавких окислов АЬОз и MgO, не растворяющихся в металле сварочной ванны, вызывает появление в шве окионых включений, а также возникновение постоянной составляющей (при сварке на переменном токе). При сварке алюминиевых и магниевых сплавов возникает о-паоность образования нитридов магния и алюминия, резко снижающих пластические свойства металла шва.  [c.369]

Контактная сварка. Точечная и шовная сварка осложняются подплавлением электродов. Применение экранов и покрытие свариваемых деталей, например, графитом значительно снижают подплавление электродов. Хорошие результаты дает использование накладок из молибдена, а также сплавов системы W - Мо. Точечн5то и шовную сварку выполняют с защитой инертным газом, ориентировочные режимы сварки приведены в табл. 12.8 и 12.9. Для соединения фольги и проволоки из технически чистых тугоплавких металлов успешно применяют конденсаторную точечную сварку.  [c.155]

Жаропрочность тантала повышается при легировании его другими тугоплавкими металлами, с большинством из которых он образует твердые растворы замещения Вольфрам, молибден и гафний наиболее эффективно повышают температуру рекристаллизации тантала. При 1650 °С наибольшей прочностью обладают сплавы системы Та——Hf, а при 1930 °С — спл ав Та—(табл. 31 7) Введение в тантал более 13 % легирующих элементов приводит к ухудшению свариваемости Введение в сплавы гафния способствует повышению сопротивления окислению Однако для длительной работы при высоких температурах на воздухе сплавы тантала нуждаются в защитных покрытиях. В связи с высокой коррозионной стойкостью танта-ловые сплавы используют в химическом машиностроении для изготовления аппаратуры. Перспективны они для применения в ядерной и ракетной технике.  [c.405]


По объему использования в сварных конструкциях первое место из тугоплавких металлов VA группы занимает ниобий [1, 2]. Технически чистый ниобий и сплавы его с твердорастворным упрочнением типа 5ВМЦ хорошо свариваются методами сварки плавлением, С увеличением толщины свариваемых металлов их свариваемость ухудшается, так как происходит сильный рост зерна в шве и ЗТВ, способствующий охрупчиванию сварных соединений. При толщинах более 3 мм предпочтительнее применять электронно-лучевую сварку. Наиболее стабильны по свойствам сварные соединения из рекристаллизованных металлов, так как при варке плавлением деформированного металла не удается избежать разупрочнения в ЗТВ с характерной для нее крупнокристаллической структурой.  [c.411]

Диффузионная сварка ниобиевых сплавов целесообразна при температурах ниже температуры рекристаллизации для предотвращения насыщения тугоплавких металлов газами (Og, Hj, N3) и роста зерна в процессе нагрева. Для этого необходимо. интенсифицировать диффузионные процессы за счет использования промежуточных металлов, наносимых на свариваемые поверхности напылением в вакууме. Толщина напыленного слоя — от нескольких десятков до нескольких тысяч ангстрем. Слой имеет очень мелкозернистую структуру. Такие прокладки растворяются в свариваемых металлах и поэтому не оказывают влияния на прочность сварного соединения. При сварке ниобиевого сплава ВН-3 (4—5,2% Мо 0,8—2,0 Zn 0,08—0,16 С 0,03 Оа <0,04 <0,005N2 остальное Nb) в качестве прокладки применяли никель, обладающий малой растворимостью в ниобии и имеющий при температуре 1373 К коэффициент диффузии на три порядка меньше коэффициента диффузии ниобия в никеле. Сварку выполняли при Т 1237 К, р = 9,6 МПа, I = 30 мин. Микроструктурные исследования деталей с напыленной поверхностью при нагреве без сварки показали, что во всех случаях происходит испарение никелевой пленки по всей поверхности, кроме зон, расположенных по границам кристаллитов. Это свидетельствует о преимущественном развитии диффузионных процессов между пленкой и границами зерен на свариваемой поверхности. Прочность сварных соединений, выполненных через никелевую пленку на оптимальном режиме Т — 1273 К, р = 19,6 МПа, = 30 мин, составляет 0,9 прочности основного металла (рис. 4). На деталях и образцах, сваренных на оптимальном режиме, остаточной деформации не наблюдали.  [c.154]

Большинство ниобиевых сплавов (табл. 19.5) отличается хорошей деформируемостью, свариваемостью и неплохой прочностью. На сегодняшний день упрочняющее легирование ниобия осуществляется простым упрочнением твердого раствора тугоплавкими элементами с высокими модулями упругости и дисперсного упрочнения карбидами типа МеС. Для образования твердых растворов замещейия, отличающихся повышенным сопротивлением ползучести, чаще всего вводят вольфрам, молибден и тантал. Элементы с высокой реакционной способностью, цирконий и гафний, взаимодействуя с углеродом и азотом, образуют очень мелкие выделения, еще более повышающие сопро1ивление ползучести. Алюминий и титан повышают стойкость основного металла против окисления однако они понижают температуру плавления и поэтому отрицательно сказываются на прочности. Сплавы выплавляют электроннолучевым способом или в вакуумной печи с двумя расходуемыми электродами и с последующей обработкой давлением. Литейные ниобиевые сплавы не известны.  [c.310]

Влияние водорода на сварные соединения из алюминия гораздо сильнее, чем на медь и ее сплавы, так как растворимость водорода ничтожна в твердом алюминии и его сплавах, а изменение ее в процессе кристаллизации очень велико. В отличие от меди, алюминий почти не растворяет свой тугоплавкий окисел А1гОз, который всегда образуется на свариваемых кромках и на присадочном металле. Окисные включения (пленки) способствуют зарождению газовых пузырей и образованию пор.  [c.335]


Смотреть страницы где упоминается термин Свариваемость тугоплавких металлов и сплавов : [c.128]    [c.346]    [c.416]    [c.245]    [c.533]    [c.139]    [c.321]    [c.219]    [c.520]   
Смотреть главы в:

Технологичность конструкций  -> Свариваемость тугоплавких металлов и сплавов



ПОИСК



Металлы и сплавы Металлы

Металлы тугоплавкие

Свариваемость металлов

Свариваемость металлов и сплавов

Свариваемость тугоплавких металлов

Сплавы металлов

Тугоплавкие металлы й сплавы

Тугоплавкие сплавы

см Свариваемость



© 2025 Mash-xxl.info Реклама на сайте