Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удаление видов

Вид стружки Средства Для удаления . Вид стружки Средства для удаления  [c.96]

Вся работа с объектами метаданных типа Вид расчета и Группа расчетов ведется в окне Конфигурация — Метаданные . Для видов расчетов отведена ветвь дерева метаданных, которая начинается у фразы Виды расчетов , а для групп расчетов — ветвь Группы расчетов . Приемы создания, редактирования свойств и удаления видов расчетов и групп расчетов совпадают с общими приемами управления объектами метаданных, изложенными в главе Метаданные , стр. 45.  [c.320]


Штуцер на видах сверху и слева показан с обрывом участок, где форма в поперечном сечении постоянна, как бы удален. Очевидно, что длина штуцера будет больше и об ее относительной величине по изображению судить нельзя (необходимо сопоставить действительные размеры длины штуцера, проставленные на чертеже).  [c.72]

В параллельных проекциях предмет изображается таким, каким его можно видеть, находясь в бесконечном удалении от него (это условие невыполнимо). Практически эту условность легко принимают и по изображению правильно представляют предмет в натуре.  [c.13]

Если координаты, определяющие удаление концов отрезка от плоскости проекций, имеют разные знаки, надо иметь в виду ал-  [c.37]

При разности потенциалов на электродах происходит ионизация межэлектродного промежутка. Когда напряжение достигнет определенного значения, в среде между электродами образуется канал проводимости, по которому устремляется электрическая энергия в виде импульсного искрового или дугового разряда. При высокой концентрации энергии, расходуемой за 10" —10 с, мгновенная плотность тока в канале проводимости достигает 8000—10 ООО А/мм , в результате чего температура на поверхности обрабатываемой заготовки-электрода возрастает до 10 ООО—12 ООО °С. При этой температуре мгновенно оплавляется и испаряется элементарный объем металла и на обрабатываемой поверхности заготовки образуется лунка. Удаленный металл застывает в диэлектрической жидкости в виде гранул диаметром 0,01—0,005 мм.  [c.401]

Растрескивание при сдвиге (рис. 49, д) характерно для пленок, обладающих большой адгезией к металлу и сравнительно малой прочностью. Этот вид разрушения, не ведущий к удалению пленки на большом участке поверхности, обычно не вызывает резкого увеличения скорости окисления металла, но способствует переходу от чисто диффузионного контроля процесса (параболический закон роста окисной пленки) к диффузионно-кинетическому контролю (сложно-параболический закон роста пленки).  [c.79]

Атомы наносимого элемента после хемосорбции или химической реакции растворяются и диффундируют в глубь основного металла. Различают два вида диффузии атомную, при которой не образуются новые фазы, а максимальная концентрация внедряемого элемента ограничена его предельной растворимостью в твердом растворе при данной температуре и плавно понижается по мере удаления от поверхности в глубь металла (рис. 78, а), например Сг в Fe, и реактивную, при которой в поверхностном слое возникает одна или несколько новых фаз, отличных от твердого раствора, через которые и идет диффузия, а распределение концентрации внедряемого элемента характеризуется наличием скачков концентраций на границах фаз (рис. 78, б), например А1 или Si в Fe.  [c.119]


Реакция (657) в виде направленного электрохимического превращения может наблюдаться на пассивном железе только в нестационарные периоды слева направо после внезапного повышения потенциала и в обратном направлении — после его сброса. В стационарном состоянии единственным направленным переходом на границе пленка—раствор является реакция (658), которая не требует обязательного сопряженного удаления кислорода, поскольку возникающие катионные вакансии могут ликвидироваться за счет процессов миграции катионов через пленку.  [c.308]

Растекание струи до бесконечности возможно только при установке решетки в неограниченном пространстве (рис. 3.4, а). Если решетка находится в трубе (канале) конечных размеров (рис. 3.4, б), структура потока за ней будет иная. Так, например, в случае центрального (фронтального) набегания жидкости на решетку в виде узкой струи, последняя, растекаясь радиально и достигая за решеткой стенок трубы (канала), неизбежно изменит свое направление на 90° и дальше будет перемещаться вдоль стенок в виде кольцевой струи. При этом в центральной части сечения за решеткой поступательная скорость будет равна нулю. В условиях реальной (вязкой) среды, вследствие турбулентного перемешивания, жидкость, подходя к стенкам трубы (канала), будет увлекать за собой неподвижную часть жидкости из центральной части сечения (рис. 3.4, б). На освободившееся место из более удаленных от решетки сечений будут поступать другие массы жидкости, и, таким образом, в центральной части сечений за решеткой возникнут обратные токи, а профиль скорости за решеткой по сравнению с начальным профилем струи (до решетки, рис. 3.5, а) будет иметь перевернутую форму (см. рис. 3.4, б, а также 3.5, б).  [c.81]

Главной характеристикой канала является вид сопряжения, который обеспечивается внешнему абоненту, а также внешнему устройству или комплексу устройств. Типовыми примерами являются пословный, посимвольный и последовательный (разрядный) интерфейсы. В каждом из этих случаев канал будет производить преобразование данных из формата, получаемого от устройства, в формат канала или из формата канала в формат, воспринимаемый устройством. Так, последовательный поток двоичных разрядов собирается в слова и при необходимости запоминается в буфере. При передаче же данных нз памяти во внешнее устройство слово, получаемое из памяти в параллельном коде, преобразуется в последовательный поток двоичных разрядов, который после этого преобразования может быть принят данным внешним устройством. Аналогичным способом будут разбираться слова на символы, а символы на слова. Преобразование формата может включать в себя такую операцию, как удаление или добавление двоичных разрядов контроля.  [c.86]

При проектировании БД первым этапом, как отмечалось, является проектирование или построение КМ предметной области. Здесь выполняют структуризацию данных, определяют связи между ними, не учитывая особенностей реализации. Первым этапом построения КМ является анализ данных. При этом собирают информацию о данных, которые используются в имеющихся прикладных программах. В процессе сбора данных определяют имена объектов и элементов данных, описаний, атрибутов, источников, оценки, сложность, важность, отношения связности между элементами и объектами, продолжительность и способы хранения данных. Далее на основе анкетирования проводят анализ организации хранения данных и исследуют документооборот от источника к пользователю. После этого приступают к разработке КМ БД. Первоначально АБД собирает информацию о всех данных для прогнозирования и перспективных исследований. Концептуальная модель БД является основой для ЛМ, которая реализуется средствами реляционной, иерархической или сетевой СУБД, При разработке КМ используют нормализацию отношений, т. е. группируют элементы данных по свойствам модификации, включения и удаления данных. Концептуальная модель может быть также представлена в виде графов.  [c.111]

На черт. 261 для определения видя конического сечения и его ближайшей и самой удаленной точек использовано косоугольное проецирование на горизонтальную плоскость проекций. Направление проецирования. S выбрано параллельным фронтальному следу плоскости (я /,,р).  [c.78]

Так, например, передача движения между кривошипами AD и СВ шарнирного аитипараллелограмма (рис. 4.6) может быть воспроизведена двумя эллиптическими фрикционными колесами. При этом законы движения звеньев остаются такими же, как и для механизма шарнирного аитипараллелограмма. Механизмы, в которых передача движения осуществляется центроидами, носят название центроидных механизмов. Практически редко можно пользоваться центроидными механизмами на всем желательном интервале движения, так как в некоторых случаях центроидами служат кривые сложного вида (самопересекающиеся, с бесконечно удаленными точками и т. д.),  [c.68]


Принцип близкодействия, используемый в механике тел нере-мериюй массы, состоит в том, "что процесс присоединения или удаления частиц, изменяющих массу, происходит мгновенно при этом частица либо мгновенно приобретает связь (масса увеличивается), либо ее теряет (масса уменьшается). Нанрнмер, для случая присоединения массы, исходя из этого принципа, уравнение движения точки с переменной массой записывают в виде уравнения И. В. Мещерского  [c.364]

Электрическое отопление. Этот вид отопления применяется в нашей стране в виде исключения в районах, обеспеченных электроэнергией от ГЭС или АЭС, при отсутствии местных Т зпливных ресурсов и при дорогостоящей доставке топлива из других районов страны, а также для небольших отдельно стоящих зданий с малыми расходами теплоты, удаленных от районных источников теплоты и тепловых сетей, для которых строительство и эксплуатация собственной котельной экономически нецелесообразны. К таким зданиям относятся насосные станции для перекачки воды и канализационных стоков, сторожевые посты и объекты вне городск(ЗЙ застройки.  [c.196]

Итак, параллельные прямые линии проецируются на плоскости проекций в виде параллельных прямых независимо от выбора направления проецирования. У параллельных отрезков односторонние крайние точки проекций являются проекциями или наиболее удаленных, или наиболее близких точек этих отрезков от плоскости проекций. Такие проекции называют однонаправленными.  [c.14]

Как уже известно, при параллельном проецировании проекции геометрического образа на плоскостях одного направления остаются неизменными, т. е. сохраняюг и вид, и размеры. Учитывая это, njm KO TH проекций можно приближать к 1еомстриче-скому образу или удалять от него. Изображения на этих плоскостях остаются постоянными. По изображениям можно определять разности удалений точек геометрического образа от плоскостей проекций.  [c.23]

Сечение шара плоскостью представляет собой круг. Fljto-скость, проходящая через центр шара, пересекает его по кругу, диаметр которого равен диаметру шара. По мере удаления секущей плоскости от центра шара диаметр круга, получающийся в сечении, уменьшается (рис. 103). Фигура сечения шара плоскостью может спроецироваться в виде отрезка, круга или эллипса (рис. 104). Для построения изображения усеченного шара строят проекции осей эллипса, а также точек эллипса, лежащих на очерковых образующих шара.  [c.48]

ДoпoлнитeJH>ныe замечатпгаТТТгакГ в ряде случаев (например, при недостатке места, при внесении изменений в чертеж, при наличии граней, не параллельных основным плоскостям проекций, при изображении удлиненных предметов, когда, например, вид слева оказывается слишком удаленным от левой стороны предмета) стандарт предусматривает отступления от нормального расположения видов с особой поясняющей отметкой (стрелкой, надписью).  [c.37]

Плоскость, удаленная от грани 5,4С на расстояние /j, изображается на дополни-rejjbHofl пл. Q, перпендикулярной к этой грани (рис. 182, в), в виде прямой и пересекает пирамиду по треугольнику 4—3—S (дана лишь горизонт, проекция этого треугольника).  [c.140]

В этот же период создаются условия для удаления серы из металла. Сера в стали находится в виде сульфида [FeSl, который растворяется также в основном шлаке (FeS). Чем выше температура, тем большее количество FeS растворяется в шлаке, т. в. больше серы переходит из металла в шлак. Сульфид железа, растворенный в шлаке взаимодействует с оксидом кальция, также растворенным в шлаке  [c.31]

К II п я щ а я стал ь раскислена б печи неполностью. Ее раскисление продолжается п изложнице при затвердевании слитка, благоллря взаимодснствшо FeO и углерода, содержащихся в металле. Образующийся при реакции FeO С == Ре + СО оксид углерода выделяется из стали, способствуя удалению из стали азота и водорода. Газы выделяются в виде пузырьков, вызывая ее кипение . Кипящая сталь практически не содержит неметаллических включений — продуктов раскпслелия, поэтому обладает хорошей пластичностью.  [c.32]

Различные методы удаления заусенцев применяют и в конце технологического процесса. Большое распространение получили механические методы, особенно с использованием ручного механизированного инструмента фрезерных нли абразивных головок, металлических щеток, шлифовальных кругов, ленточных шлифовальных установок. Для удаления заусенцев, получения фасок и переходных поверхностей используют также металлорежущие станки (рис. 6.109). Фаски на деталях типа тел вращения протачивают на станках токарной группы (рис. 6.109, а), а на деталях в виде корпусов, плат, планок — на фрезерных станках (рис. 6.109,6). Целесообразно использование специального режущего инструмента — фасонных фрез. Широко используют станки сверлильнорасточной группы (рис. 6.109, б). Фаски на выходе отверстий получают специальными зенковками или обычными сверлами. Производительную обработку кромок деталей проводят на протяжных станках (рис. 6.109, г). Протяжки выполняют по форме обрабатываемых граней, расположенных на наружных или внутренних поверхностях. Используют зуборезные станки (рис. 6.109, д) для снятия заусенцев и получения фасок методом огибания (например, на шлицевых валах).  [c.380]

Перед формовкой на рабочие поверхности формы наносят разде-лительный слой (поливиниловый спирт, нитролаки, целлофановую пленку и др.), предотвращающий прилипание связующего к поверхности формы. По разделительному слою наносят слой связующего, затем слой предварительно раскроенной ткани, которую тщательно прикатывают резиновым роликом к поверхности формы. Этим достигаются плотное прилегание ткани к поверхности формы, удаление пузырьков воздуха и равномерное пропитывание ткаии связующим. Затем снова наносят связующее, ткань и т. д. до получения заданной толщины. Отверждение происходит при нормальной температуре в течение 5—50 ч, в зависимости от вида связующего. Время отверждения сокращают увеличением температуры до 60—120 °С. После отверждения готовую деталь извлекают из формы и в случае необходимости подвергают дальнейшей обработке (обрезке кромок, окраске и т. д.).  [c.434]


Еели вид обработки поверхноети конетруктор не устанавливает, то применяют знак по рис. 22.8, а. Это обозначение является предпочтительным. Если требуется, чтобы поверхность бьиа образована обязательно удалением слоя материала, например точением, шлифованием, полированием и пр., применяют знак по рис. 22.8, 6.  [c.348]

Для изготовления глубоких отверстий относительно небольших диаметров — до 30 мм — применяют спиральные сверла с внутренним подводом охлаждения однако обрабатывать таким спиральным свер лом глубокие отверстия трудно, так как приходится часто выводить-сверло из отверстия для удаления застрявшей стружки и, кроме того, оно недостаточно прочно и менее точно обеспечивает соблюдение направления отверстия. Вместо спиральных сверл лучше применять пушечные сверла (рис. 74, б), которые не имеют поперечной режущей кромки, что облегчает резание металла. Вершина сверла смещена на 1/4 диаметра, благодаря чему образуется конус, направляющий сверло. Сверлению пушечным сверлом предшествует предварительное засверливание металла на некоторую глубину спиральным или перовйм сверлом, что должно быть выполнено тщательно во избежание увода пушечного сверла в сторону. Получаемая при сверлении мелкая стружка легко удаляется охлаждающей жидкостью. Существенным недостатком пушечных сверл является их малая производительность. При сверлении глубоких отверстий диаметром от 80 до 200 мм, длиной до 500 мм широкое применение находят кольцевые сверла. Они вырезают в сплошном металле лишь кольцевую поверхность, а остающуюся после такого сверления внутреннюю часть в форме цилиндра можно использовать для изготовления других деталей. Такие сверла поставляются с несколькими комплектами запасных быстрорежущих ножей. Эти ножи выпускаются взаимозаменяемыми в заточенном виде. Затупившиеся ножи сверловщик заменяет непосредственно на своем рабочем месте без снятия сверла со станка.  [c.208]

Применяемые заготовки также влияют на выбор операций и их последовательность в технологическом маршруте. Например, в условиях мелкосерийного и среднесерийного производства для изготовления валов применяют горячекатаный прокат, штамповки, изготовленные на молотах, горизонтально-ковочных и ротационно-ковочных машинах и др. Каждому виду заготовки соответствуют свои типовые формулировки операций, включение той или иной операции термической обработки, например искусственного старения д.ля литых чугунных корпусов. Вид заготовок влияет на содержание черновых опер зций, связанных с удалением напуска. В свою очередь, использование индивидуальных простейших заготовок или прогрессивных, приближающихся к контуру детали, а также комплексных заготовок для группы деталей определяется программой выпуска, конструкцией  [c.95]

Недостатком летучих замедлителей коррозии является прекращение их защитного действия после удаления их иаров из атмосферы, окружающей металл, и в особенности в условиях многократного обмена воздуха. Летучие замедлители коррозии можно применять либо в порошкообразном виде (в этом случае их помещают внутри изделий или аппаратов), либо в виде раствора, наносимого методом распыления (в закрытых помещениях). Из летучих замедлителей коррозии наибольшее применение нашли морфолин п дициклогексиламин. Эти замедлители эффективны и при высоких температурах, имеют высокую упругость пара, обладают гидрофобностью и поэтому способствуют созданию иа поверхности металла гидрофобной иленки. Нашли также применение в качестве летучих замедлителей коррозии нитрит дициклогексиламина, нитрит дициклогексиламмония и карбонат цик. югексиламмония. Летучим замедлителем коррозии является также бензоат натрия, который применяется для пропитки упаковочной бумаги, и др.  [c.317]

В среде окисляющих газов, помимо окисления хелеаа, на границе окалина-металл происходит окисление углерода и удаление его в виде газообразных продуктов  [c.18]

Основные виды связи влаги с м а т е р и а -л о м. При рассмотрении законов перемещения теплоты и влаги в коллоидных капилляриопористых телах, влажных материалах необходимо учитывать формы связи влаги с твердым скелетом тела, так как с изменением хара тера этой связи меняются физические свойства вещества и энергия связи влаги с материалом, а это важно при выборе метода (способа) удаления влаги из материала.  [c.502]

Поглощение адсорбциоиио связанной жидкости сопровождается выделением теплоты. Удаление прочно связанной с телом адсорбционной влаги связано с соответствующей затратой энергии. При удалении адсорбционно связанной влаги она сначала испаряется в материале, а затем перемещается в виде пара к его поверхности.  [c.503]

Для повышения жесткости без увеличения массы деталей необходимо усиливать участки сечений, подвергающиеся при данном виде нагружения наиболее высоким напряжениям, и удалять ненагруженные II малонагруженные участки. При изгибе напряжены сечения, наиболее удаленные от нейтральной оси. При кручении напряженьт внешние волокна по направлению к центру напряжения уменьшаются и в центре они равны нулю. Следовательно, целесообразно всемерно развивать наружные размеры, сосредоточивая материал на периферии и удаляя его из центра.  [c.229]

В обозначении шероховатости поверхности, вид обработки которой конструктором не устанавливается, применяют знак, приведенный на рис. 282, я, если поверхность образована с уД алением слоя материала — знак, приведенный на рис. 282,6, и для поверхности, образованной 6а удаления слоя материала,—знак, приведенный на рис. 282,в.  [c.409]


Смотреть страницы где упоминается термин Удаление видов : [c.264]    [c.80]    [c.117]    [c.671]    [c.704]    [c.209]    [c.290]    [c.144]    [c.235]    [c.288]    [c.263]    [c.289]    [c.158]    [c.105]    [c.142]   
Смотреть главы в:

Эффективная работа SolidWorks 2004  -> Удаление видов



ПОИСК



1 — 349, 350 — Удаление выдавливанием — Виды характерные

Виды загрязнений и способы их удаления

Камерные топки с удалением шлака в твердом виде

Удаление

Удаление групп и видов



© 2025 Mash-xxl.info Реклама на сайте