Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы измерений па высоких частотах

Схема компенсационной установки для измерения емкости двойного электрического слоя изображена на рис. 117. Метод состоит в сообщении поверхности металла и раствору некоторых малых количеств электричества AQ и —AQ и вычислении изменения потенциала электрода АУ и емкости. Чтобы электричество не тратилось на электрохимические реакции, при работе используется переменный ток высокой частоты.  [c.166]


Таким образом, для инфракрасной области спектра наблюдается удовлетворительное согласие теории, развитой Друде, с данными эксперимента и открывается возможность вычисления а и с по формулам (2.27) из экспериментально найденных оптических констант металла п и лае. Следует отметить, что обратный путь (получение п и пае из измерения а и е) не приводит к успеху, так как в области столь высоких частот отсутствуют достаточно точные методы определения этих электрических констант.  [c.106]

Это значение получено как итог согласования результатов наиболее надежных измерений с, выполненных за последние годы с помощью различных методов, в которых исследовались электромагнитные волны с частотой от 10 Гц (радиочастота) до 10 2 Гц (гамма-лучи). Точность при наиболее высоких частотах  [c.322]

Предметом стандартизации в ГСИ являются также методы измерений и поверки. Например, методика выполнения измерения для определения параметров по полю в раскрыве высоконаправленных антенн приведена в ГОСТ 8.309—78, методы и средства поверки дипольных измерительных антенн установлены ГОСТ 8.116—74, методы и средства поверки электронных вольтметров при высоких частотах даны в ГОСТ 8.118—74.  [c.85]

Применение ультразвуковых методов для композиционных материалов из-за сильного затухания упругих волн возможно только при условии снижения частоты в области ниже 1 мГц. Для крупногабаритных конструкций и изделий с толщиной свыше 50—100 мм частотный диапазон в зависимости от типа материала и контролируемого параметра должен находиться в области 50—500 кГц. При контроле физико-механических характеристик для повышения точности измерений необходимы малое затухание и высокая крутизна переднего фронта упругой волны. Однако малое затухание можно получить только на низких частотах (20—200 кГц), а высокую крутизну переднего фронта — на высоких частотах. При контроле дефектов снижение частоты приводит к снижению чувствительности и разрешающей способности, увеличению длительности сигнала (мертвой зоны), а повышение частоты уменьшает диапазон контролируемых толщин. Таким образом, применение ультразвуковых методов для композиционных материалов выдвигает ряд новых требований, осуществление которых приведет к изменению методики контроля, конструкции преобразователей и принципиальных электрических схем приборов. К этим требованиям относятся  [c.85]


Основной особенностью ультразвукового метода, отличной от других методов контроля характеристик твердых и жидких сред, является отсутствие каких-либо нарушений структуры исследуемой среды как при монтаже датчиков, так и при измерении, т. е. при прохождении через исследуемую область ультразвуковых колебаний малой интенсивности. Кроме того, именно малая величина интенсивности колебаний в сочетании с высокой частотой (порядка нескольких мегагерц) и большой проникающей способностью (при использовании импульсного метода особенно) позволяет регистрировать весьма малые изменения тех или иных характеристик исследуемой среды. В каждом конкретном случае исследования используется один из пяти основных методов возбуждения колебаний продольных, сдвиговых, поверхностных, изгибнЫх й  [c.291]

Движущиеся изображения используются для сравнения фиксированных частот, когда неизвестная частота почти равна образцовой частоте или частоте, находящейся в отношении двух целых чисел с образцовой частотой. При этом разностная частота определяется путем измерения периода повторения фигуры при помощи секундомера или хроноскопа. Таким образом сравнение фиксированных частот осуществляется дифференциальным методом, обеспечивающим высокую точность измерения.  [c.422]

Этим методом можно измерять изменение частоты 10 Гц от абсолютных значений частот света 5-10 Гц. С помощью существующей аппаратуры измеряется скорость потока от 10 см/с до 100 м/с. Кроме того, этот метод имеет ряд других преимуществ измерение осуществляется с высокой точностью (погрешность не более 3%) и почти мгновенно вся информация переносится световыми лучами, поэтому исследуемый поток остается практически не искаженным, плотность давления и температура среды не влияют на измерения, тарировка прибора не требуется метод обладает высоким пространственным разрешением (порядка 10 мкм) обработку информации можно вести электронными методами, включая ЭВМ.  [c.270]

Метод измерения удельной электрической проводимости иначе называется кондуктометрией. При кондуктометрии определяется сопротивление (или проводимость) слоя раствора между двумя электродами, помещенными в раствор электролита. Для того чтобы избежать диффузионных процессов, возникающих при измерениях на постоянном токе, измерения проводят на переменном токе высокой частоты.  [c.288]

К микроволновому диапазону принято относить электромагнитное излучение очень высокой частоты в пределах 0,5. .. 1000 ГГц. Эти частоты широко используются в радарных установках. СВЧ-методы могут быть использованы для обнаружения и локации дефектов, измерения толщины изделия, определения содержания в нем влаги, а также для изучения диэлектрических свойств неметаллических материалов.  [c.479]

Определение динамического модуля упругости и тангенса угла механических потерь на установке с использованием принципа бегущих волн. Обычные методы и установки [33] для исследования динамических механических свойств полимеров не дают возможности определять модуль упругости Е и тангенс угла механических потерь tg б в широком интервале достаточно высоких частот при одноосном растяжении. Для измерения и tg б в интервале частот от 100 до 40 ООО Гц разработана установка с использованием принципа бегущих волн 31]. Особенностью установки является возможность испытания деформированных образцов. Сущность метода заключается в том, что вдоль образца движется каретка, в которой с противоположных сторон закреплен вибратор и приемник при помощи генератора в образце создается бегущая продольная волна, которая фиксируется приемником.  [c.235]

Обычно диэлектрические измерения проводят на одной или нескольких частотах в интервале температур от —150 до 350 °С и больше. В связи с этим, естественно, возникает вопрос о том, на каких частотах предпочтительнее проводить такие измерения. Известно, что наиболее эффективны измерения на низких частотах, поскольку при измерениях на частотах выше 200 кГц релаксационные максимумы смещаются с повышением частоты в сторону более высоких температур и накладываются друг на друга, что резко снижает разрешающую способность метода. Поэтому наибольшей разрешающей способностью обладают диэлектрические методы, когда используются частоты от 0,01 Гц до 200 кГц.  [c.241]


При создании первых лазеров готовых методов измерения лазерных параметров, разумеется, не было, хотя существовали хорошо освоенные методы, развитые в оптике, спектроскопии, радиотехнике и в технике СВЧ. Среди них можно отметить интерференционные методы измерения длины волны, гетеродинный метод измерения частоты и др. Поэтому многие методы измерения лазерных параметров были разработаны самими исследователями в процессе изучения оптических квантовых генераторов. Так, например, были разработаны тонкие радиотехнические методы исследования спектра частот оптического квантового генератора и форумы спектральной линии с чрезвычайно высокой разрешающей способностью, недоступной для методов оптической интерферометрии.  [c.6]

Метод заключается в возбуждении, при помощи генератора высокой частоты радиотехнического типа, собственных продольных, поперечных или крутильных колебаний образца и измерении амплитуды этих колебаний радиотехническими способами (электродинамический или конденсаторный микрофон, электромагнитный или пьезоэлектрический адаптер с соответствующими усилителями, индикаторами и т. д.).  [c.67]

Современная техника измерения неэлектрических величин электрическими методами достигла высокого уровня развития. Различные по своей физической природе величины, поступая на вход специальных устройств, преобразуются ими в напряжение переменного или постоянного тока, а также в частоту, фазу или период электрических колебаний. В результате работы, проведенной за последние годы в ряде научно-исследовательских организаций, созданы и разрабатываются частотные датчики для измерения различных физических величин.  [c.315]

Полученные данные сопоставлялись с экспериментом. Для обеспечения высокой точности эксперимента использовался резонансный метод измерения собственных частот закороченного отрезка волновода. Резонансные частоты измерялись с помощью гетеродинного волномера ШГВ-С. Точность измерения резонансных частот составляла +0,01%. Тип волны и порядковый номер резонанса определялся с помощью поглощающего тела, которое вводилось внутрь волновода. Так как возбудители, применяемые в эксперименте, обеспечивали возможность установления минимальной связи, погрешность за счет связи не превышала погрешности волномера. Параметром, определяющий точность эксперимента, являлась точность изготовления внутренней полости гофрированной трубы. Исследовавшийся отрезок круглого гофрированного волновода был изготовлен путем электролитического осаждения меди на оправке. Для обработки оправки использовался резец с синусоидальным профилем, размеры которого контролировались с помощью микроскопа. Точность изготовления внутренней полости волновода составляла 20 мкм.  [c.184]

Резонансные методы на высоких частотах. При измерениях на частотах порядка мегагерц можно использовать метод, описанный Болефом и Мейесом [122]. Количество приборов здесь  [c.368]

Точность измерения скорости света определяется в этом случае, во-первых, тем, насколько стабилен данный источник, и, во-вторых, тем, с какой точностью удается измерить частоту и длину волны излучения. Источниками электромагнитного излучения, наиболее удовлетворяющими этим требованиям, являются лазеры. Измерение длины В0Л1ГЫ , основанное на явлении интерференции света, производится с ошибкой, не превышающей величину порядка 10 , Измерение частоты излучения основано на технике нелинейного преобразования частоты. Используемый прибор (например, полупроводниковый диод), приняв синусоидальное колебание некоторой частоты, дает на выходе колебания более высокой частоты — удвоенной, утроенной и т. д. Этот метод с помощью нелинейного элемента излучс1П1Я кратной частоты позволяет измерять частоту излучения лазера и сравнивать его с частотами, измеренным прежде. Согласно результатам изме-рени , в1> пол 1ен ЫМ этим методом в 1972 г., скорость света в вакууме равна (299792456,2 1,1) м/с. Новые методы разработки нелинейных фотодиодов, испо.и.зусмых для смещения частот светового диапазона спектра, позволят в будущем увеличить точность лазерных измерений скорости света.  [c.418]

Метод вихревых токов, или, как мы будем называть его в этой книге по аналогии с индукционным нагревом с помощью токов высокой частоты, индукционный метод используют в трех главных направлениях для выявления несплошностей в поверхностных слоях материалов, при измерениях толщины листов, стенок труб и Покрытий на металлах и, наконец, для структуроскопии. С первыми двумя направлениями читатель может ознакомиться по работам [Л. 23—27].  [c.5]

Основные свойства упругих колебаний высокой частоты или ультразвуковых колебаний, как известно, описываются теми же закономерностями, что и свойства колебаний звукового диапазона. В частности, это касается условий распространения упругих волн в сплошной изотропной среде, обладающей упругими свойствами. Однако ультразвуковые колебания могут быть примен1 ны для решения ряда новых задач. Примером может служить исследование изменения различных характеристик жидких и твердых тел в зависимости от скорости распространения ультразвука и коэффициента затухания с помощью импульсно-фазового компенсационного метода приборами типа УЗИХ, разработанных Н. И. Бражниковым [9], [10]. Погрешность измерений скорости ультразвука такими приборами составляет 0,007 и 0,003% на частотах соответственно 1 и  [c.291]


Явление интерференции двух световых лучей — прямого от источника света и отраженного от вибрирующей поверхности используется преимущественно для лабораторных испытаний. Этот метод является одним из наиболее точных при измерении малых амплитуд. Интерференционный метод довольно широко применялся в начале нашего столетия, но затем он уступил место более совершенным методам измерения при помощи электромеханических систем. Однако в последнее время интерференционный метод снова стал применяться для абсолютной калибровки других типов виброизмери-тельной аппаратуры при высоких частотах и весьма малых амплитудах вибрации. Интерференционному методу посвящена уже довольно обширная современная литература. Применение фотоумножителя в качестве регистратора [28 ] и использования для наблюдения интерференционных максимумов высшего порядка [29] значительно расширяет возможности метода.  [c.404]

Кроме лазеров в качестве источников света созданы квантовые И. для измерения небольших перс-мош,епий, длин деталей. Их действие основано на зависимости разностной частоты излучения. между соседними продольными модами лазера /=е/2Л от длины резонатора L (см. Ла-зер). По изменению разностной частоты Д/, происходящей при перемещении одного из зеркал резонатора, может быть измерена величина этого перемещения кЬ — Ш-Щс. Преимуществом таких И. является то, что измерение линейных размеров (и перемещений) сводится к определению частоты, к-рую можно измерить радиотехн. методами с высокой степенью точности.  [c.171]

Метод Р. является одним из наиб, простых методов абс. измерения интенсивности УЗ в области средних и высоких частот. Однако Р. а. инерциовев и подвержен  [c.222]

В фазовом методе непрерывное излучение модулируется (напр., по синусоидальному закону) с высокой частотой (U и значение t определяется по запаздыванию фазы принимаемого отражённого излучения по отношению к фазе испускаемого (опорного). Измерения проводят след, образом. На входы фазометра поступают опорный сигнал с выхода генератора синусоидальных колебаний Ei(t) — Eisiatut и сигнал с выхода фотоприёмника (прошедший измеряемое расстояние) г(0 — = ssin(ii)i — <р), где ф = 2(ud/ 4- фо (фо — фазовый сдвиг, вносимый измерит, установкой). Для частот модуляции (D, соответствующая длина волны к-рых Ящ > 2d, измеренное значение ф (за вычетом фазового сдвига фо) однозначно определяет расстояние d. Выполнение условия ктп > 2d противоречит получению высокой точности на больших расстояниях, т. к. для этой цели необходимо повышать частоту модуляции. Для Яда < 2d следует учитывать целое число N волн модуляции, укладывающихся на интервале 2d. При этом  [c.465]

Аппаратура при возбуждении гармоиической силой. Наиболее распространенный метод измерения частотных характеристик заключается в приложении к объекту синусоидальных сил, медленно изменяющих свою частоту, и в получении основных результатов (амплитуды и фазы отклика) в графической или табличной форме. Преимущества этого метода перед другими в том, что соответствующая аппаратура хорошо отработана-, достигается (с сопровождающими фильтрами) высокое отношение сигнал/шум малы нелинейные искажения обеспечивается широкий диапазон нагрузок. Подача на ЭВМ данных, обработанных аналоговой аппаратурой, существенно упрощает цифровую обработку, что важно на первых этапах внедрения цифровой техники в эту область измерений.  [c.323]

При измерениях таким методом возникают две трудности создание чисто синусоидального изменения температуры на одном из концов образца и постепенный рост средней температуры. Последнюю проблему решили Грин и Коулее [88], у которых нагрев и охлаждение осуществлялись током, пропускаемым через контакт между р- и п-типами теллурида висмута, причем направление тока периодически менялось на противоположное. Вследствие эффекта Пельтье тепло выделялось в контакте при одном направлении тока и поглощалось при другом. Выделяемое джоулево тепло компенсировалось за счет пропускания большого тока в направлении, вызывающем охлаждение образца. Этот метод нагрева также помогает создавать синусоидальное изменение температуры. Конец образца вместе с нагревателем имеет температуру, периодически меняющуюся со временем, которую можно разложить в ряд Фурье с небольшим числом гармоник. Главные члены тогда имеют частоты со, Зсо и т, д., но, так как поглощение волны больше при высоких частотах, волна становится почти строго гармонической уже на небольшом расстоянии от нагревателя. Затем можно найти поглощение и скорость волны и с помощью этих величин вычислить коэффициент  [c.21]

Тот факт, что модули упругости не обязательно уменьшаются с ростом температуры, как было указано Вертгеймом, можно видеть из исследований Фрэнка Хортона 1905 г. (Horton [1905, 1]), посвященных изменению модуля крутильной жесткости кварцевых волокон в области температур от 20 до 1000°С. Повторяя эксперименты с крутильным маятником Кулона 120-летней давности (1784 г.) с кварцевыми волокнами диаметром 0,001 см, которые использовались с той же целью, что и в опытах Кулона, поскольку они являются почти универсальными в качестве подвесок в крутильных установках, когда требуется высокая точность (там же, стр. 401), Хортон добавил только две новые детали к исходным экспериментам. Во-первых, частоты колебаний, используемые для вычисления значений модуля упругости, он определял, применяя новый метод измерения времени путем синхронизации, предложенный профессором Пойнтингом , и, во-вторых, добился важной для эксперимента точности в 0,01% при определении радиуса волокна, прокатывая малый отрезок его между двумя тонкими стеклянными капиллярными трубками и подсчитывая число вращений, необходимых для прохождения дистанции в 5 мм.  [c.470]

В настоящее время отсутствуют методы, которые позволили бы воспроизвести и исследовать форму петли гистерезиса при напря-жениях, ниже предела выносливости в случае высоких частот нагружения (>30—50 Гц). В связи с этим о соответствии той или иной гипотезы о форме петли гистерезиса экспериментальным данным судят по различным косвенным измерениям (затухание свободных колебаний, температура образца, форма резонансной кривой и т. п.).  [c.83]

Для обнаружения инфразвука и измерения его мощности обычные методы непригодны. Инфразвук очень низкой частоты можно обнаружить, например, чувствительными барометрами. Для фиксации инфразвука сравнительно высоких частот обычно используют ми1крофо>ны больших размеров. Вообще же индикаторы инфразвука довольно сложны, и мы на них здесь останавливаться не будем.  [c.409]

Хансен и др. [104, 105] разработали метод измерения затухания амплитуды и сдвига по фазе яшкроволнового луча в зависимости от концентрации электронов и частоты соударений в следе. Гребенка датчиков типа сфокусированного микроволнового зонда позволяет измерить как осевое, так и радиальное распределения концентрации электронов в следе. Но поскольку электроны превращают среду в проводящую плазму, способную отражать, поглощать и преломлять электромагнитные волны, успешное применение любых микроволновых приборов для диагностики плазмы зависит от наличия информации о взаимодействии электромагнитных волн с плазмой. Это взаимодействие особенно сильно проявляется, когда частота электромагнитных волн близка к плазменной частоте, которая пропорциональна корню квадратному из концентрации электронов. Измерения следа проводятся на баллистических установках, так как такие установки наиболее экономичны, позволяют тщательно контролировать начальные условия, а аппаратура размещена близко к траектории полета, где отношение сигнала к помехе более высокое.  [c.146]


Вторая часть книги посвящена вопросам технических измерений в машиностроении. Состояние метрологии и технических измерений в СССР и за ])убежом отралсено в государственных стандартах и инструкциях Госстандарта СМ СССР на международную систему единиц, принятую для применения в СССР, метрологические термины и определе шя, средства и методы измерений, а также в создании и внедрении в промышленность новых средств и методов контроля изделий. Пр 1 этом существенным фактором является все более широкое применение в промышленности высокочастотных и высоко-производ 1тельных средств активного и пассивного контроля качества изделий обращает на себя внимание стремление промышленности переходить от простой разбраковки изделий к активному контролю, управлению качеством. Повышение требований к точности измерений способствует тому, что точность производственных измерений становится соизмеримой с точно-ностью воспроизведения эталонов. В связи с тем, что точность измерения частоты значительно превышает точность измерения любой другой физической величины, то метрологи стремятся свести измерения любой физической величины к измерению частоты. Поэтому наиболее перспективным направлением в измерительной технике является измерение различных физических величин путем преобразования их в частоту. При этом использование частоты при измерениях для получения информации в дискретной форме является еще одним важным моментом для современной измерительной, вычислительной и управляющей техники. Поэтому цифровые информационноизмерительные устройства с частотными преобразователями находят все более широкое практическое применение в промышленности.  [c.4]


Смотреть страницы где упоминается термин Методы измерений па высоких частотах : [c.547]    [c.164]    [c.335]    [c.492]    [c.30]    [c.161]    [c.3]    [c.233]    [c.155]    [c.533]    [c.268]    [c.268]    [c.128]    [c.271]    [c.234]    [c.180]    [c.85]    [c.313]   
Смотреть главы в:

Методы и приборы ультразвуковых исследований Т.1 Ч.А  -> Методы измерений па высоких частотах



ПОИСК



Измерение емкости на высоких частотах методом заряда конденсатора

Измерение емкости на высоких частотах методом компенсации

Измерение методы

Измерения при высоких частотах

Метод измерения частоты

Частота, измерение

Частоты высшие



© 2025 Mash-xxl.info Реклама на сайте