Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОБЩИЕ ИНТЕГРАЛЫ ЗАДАЧИ О п ТЕЛАХ

ГЛАВА VII. ОБЩИЕ ИНТЕГРАЛЫ ЗАДАЧИ О п ТЕЛАХ........233  [c.13]

ОБЩИЕ ИНТЕГРАЛЫ ЗАДАЧИ О п ТЕЛАХ  [c.233]

Полагая число групп равным п, мы получим, написав уравнения движения п центров тяжести, Зл дифференциальных уравнений второго порядка, — по три для каждого центра тяжести. Эти уравнения, интегрирование которых составляет задачу п тел, допускают семь известных первых интегралов, которые мы укажем как приложения общих теорем о движении системы. Современные средства анализа не допускают выполнения интегрирования этих уравнений. Тем не менее в небесной механике оказалось возможным при помощи этих уравнений вычислить с достаточной степенью точности движение центров тяжести небесных тел благодаря тому, что массы всех тел солнечной системы очень малы по сравнению с массой Солнца. Так, масса Юпитера, наибольшая во всей системе, не составляет тысячной доли массы Солнца, Приведя число тел к трем, получим знаменитую задачу трех тел.  [c.349]


О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]

В этом параграфе осталось сказать несколько слов о задаче трех и более тел. В общей задаче п тел считается, что п материальных точек взаимно притягиваются друг к другу по закону всемирного тяготения Ньютона. Лля заданных начальных положений и скоростей этих точек требуется найти их местоположение как функций времени. Решение этой задачи не найдено до сих пор. Известно, что интегралы движения точек не выражаются в алгебраических или трансцендентных функциях их координат и скоростей.  [c.415]

Горячев Д. П. Некоторые общие интегралы в задаче о движении твердого , тела. Варшава, 1910.  [c.100]

Задача о существовании дополнительного интеграла уравнений вращения тяжелого твердого тела вокруг неподвижной точки, аналитического по каноническим переменным и параметру (л, впервые поставлена А. Пуанкаре в п. 86 его Новых методов небесной механики . Анализируя разложение возмущающей функции, А. Пуанкаре показал, что (в нашей терминологии) вековое множество не является всюду плотным, и, следовательно, его общая теорема об отсутствии новых аналитических интегралов не применима ...ничто не препятствует существованию третьего однозначного интеграла, если только якобиан трех интегралов обращается в нуль, как только п [у нас и , В. К.) становится кратным п [у нас и)1, В. К.)] отсюда следует, что этот третий интеграл не может в общем случае быть алгебраическим.  [c.72]

Таким образом, если условие дФ д1 = О нарушается в процессе движения, мы не можем выбрать бх, Ьу, 6z так, чтобы они были равны bt, Уравнение дФ д1=0 является условием того, что уравнение связи (1) не содержит явно времени. 352. Большое преимущество теоремы живой силы состоит в том, что она сразу дает соотношение между скоростями рассматриваемых тел и переменными или координатами, определяющими положение тел в пространстве В частности, если по смыслу задачи положения всех тел могут быть определены одной переменной, то уравнение живой силы полностью определяет движение. Вообще говоря, теорема живой силы часто дает первый интеграл уравнений движения второго порядка. Если, однако, для рассматриваемой системы справедливы также некоторые теоремы, установленные в п. 282, так что общее число первых интегралов равно числу независимых координат системы, то также отпадет необходимость выписывать уравнения движения второго порядка. (См. п. 143 )  [c.304]


Еще в 1878 г. Ф. А. Слудский высказал без доказательства теорему о том, что необходимым условием общего соударения свободных материальных точек, взаимно притягивающихся по закону Ньютона, является аннулирование всех постоянных интегралов площадей в движении системы относительно ее центра инерции. Подобную мысль высказал и К. Вейерштрасс Он показал, что при отличной от нуля нижней границе минимума взаимных расстояний точек системы координаты этих точек являются голоморфными функциями времени в полосе комплексной i-плоскости, ограниченной двумя симметричными относительно действительной оси прямыми. Исследуя вопрос о существовании соответствующих начальных условий движения, он пришел к заключению, что по крайней мере для задачи трех тел такие начальные условия не только существуют, но и представляют собой общий случай, в то время как парное и, тем более, общее соударение точек в конечный момент может произойти только при особых условиях. Вейерштрасс без доказательства также заметил, что координаты точек системы разлагаются в окрестности момента парного соударения t = в ряды по целым положи-J тельным степеням (fj — i) и зависят от бге — 2 произвольных постоянных. Эту теорему доказал П. Пенлеве . Он показал также, что если движение в классической задаче п тел, регулярное до момента ti, в этот момент нарушает регулярность, то минимум взаимных расстояний точек при t-у ti стремится к нулю. Если п = 3, то единственной особенностью движения может быть только парное или общее соударение тел в момент Если и 3, могут быть и такие особенности, когда некоторые из взаимных расстояний, не стремясь ни к каким определенным пределам при t ti, осциллируют в каких угодно границах. П. Пенлеве установил, что начальные условия движения, соответствующие парному соударению, должны удовлетворять определенным аналитическим соотношениям, однозначным относительно координат и алгебраическим относительно скоростей, если по крайней мере массы трех точек отличны от нуля. Найти эти условия удалось Т. Леви-Чивита и Г. Бискончини . Однако эти условия выражаются очень сложными рядами и могут быть использованы непосредственно только в случае, когда соударение происходит через весьма малый промежуток времени после начального момента.  [c.112]

Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]



Смотреть страницы где упоминается термин ОБЩИЕ ИНТЕГРАЛЫ ЗАДАЧИ О п ТЕЛАХ : [c.32]    [c.186]   
Смотреть главы в:

Введение в небесную механику  -> ОБЩИЕ ИНТЕГРАЛЫ ЗАДАЧИ О п ТЕЛАХ



ПОИСК



Задача общая (задача

Интеграл общий

Интегралы задачи



© 2025 Mash-xxl.info Реклама на сайте