Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Протонные процессы

Протонные процессы. Пленки адсорбированной воды на поверхностях неорганических и даже биологических объектов выполняют важнейшую функцию не только в природе, но и в технике. Вода в мембранах живых клеток играет определяющую роль в  [c.265]

Основными составляющими радиоактивного излучения являются нейтроны, протоны, дейтроны, а-частицы, р-частицы и -у-излуче-ние. Радиационные эффекты сводятся к действию излучения на металлы, коррозионную среду и процесс их взаимодействия, т. е. на электрохимическую коррозию металлов.  [c.369]


Характеристики ускорителей протонов на высокие энергии как источников излучений можно получить, если известны законы взаимодействия протонов высоких энергий с атомами материалов мишени. Это требуется и для расчетов защиты. Процессы взаимодействия нуклонов высоких энергий весьма специфичны, поэтому мы и рассмотрим их прежде, чем приступить к рассмотрению вопросов защиты ускорителей протонов высоких энергий.  [c.239]

Процессы взаимодействия. Заряженные частицы (протоны, я--мезоны), проходя через вещество, теряют свою энергию на ионизацию ато.мов среды (электромагнитные взаимодействия) и испытывают упругие и неупругие взаимодействия с ядрами атомов. Нейтральные частицы взаимодействуют с ядрами главным образом в результате неупругих и упругих процессов.  [c.240]

Каскадная стадия процесса взаимодействия. Множественность. Каскадная стадия процесса взаимодействия первичной частицы с нуклонами ядра представляется последовательностью попарных случайных взаимодействий. Поэтому описание этой стадии процесса может быть проведено методами статистических испытаний (методом Монте-Карло), Расчеты требуют больших вычислений, однако использование ЭВМ позволяет проводить такие расчеты и получать результаты с достаточной точностью. Наиболее полные характеристики каскада, рассчитанные методом Монте-Карло, получены в работах [13—16]. Рассчитан [13, 14] каскад для ядер АР , Си , Ри °°, Се °, ВР , и энергий первичных протонов от 82 Мэе до 2 Гэв. Расчеты проведены при некоторых упрощающих предположениях [11]. Так, не учитывали диффузную границу ядра ядро рассматривали как однородную сферу радиусом = в качестве импульсного  [c.245]

Каскадная стадия процесса взаимодействия. Спектрально-угловые распределения каскадных частиц. Энергетическое распределение каскадных частиц характеризуется широким спектром. В нем имеются частицы с энергиями, близкими к энергии первичной частицы, и частицы с энергией вплоть до некоторого минимального значения, с которой они могут покинуть ядро. Очевидно, что минимальная энергия различна для протонов и нейтронов из-за кулоновского барьера. Считается, что в спектре каскадных частиц имеется хотя бы одна частица с энергией, близкой к энергии падающей частицы. Так как такая частица обычно совпадает с сортом падающей частицы, ее называют лидирующей частицей.  [c.249]

Примером сильного взаимодействия могут служить ядерные силы, связывающие в атомных ядрах протоны и нейтроны. Слабое взаимодействие обнаруживается в процессах, связанных с испусканием или поглощением нейтрино.  [c.336]


Мы рассмотрели один и тот же процесс в двух системах отсчета. В лабораторной системе отсчета протон, находящийся под действием взаимно перпендикулярных полей Е и В, движется по сложной циклоидальной орбите, определяемой следующим уравнением  [c.137]

Вследствие этого сила тока высокоскоростных ионов, получаемого этим косвенным способом, сравнима с силами токов, обычно получаемых методами прямого ускорения с применением высокого напряжения. Более того, фокусирующее действие приводит к образованию очень узких ионных пучков (с диаметром поперечного сечения менее 1 мм), являющихся идеальными для экспериментального изучения процессов межатомных столкновений. Гораздо меньшее значение имеет вторая особенность метода, заключающаяся в применении простого и весьма эффективного способа корректировки магнитного поля вдоль траектории ионов. Это дает возможность легко добиться эффективной работы прибора с очень высоким коэффициентом усиления (т. е. отношением конечного эквивалентного напряжения ускоренных ионов к приложенному напряжению). Вследствие изложенного описываемый метод уже на его нынешней стадии развития представляет собой высоконадежный и экспериментально удобный способ получения высокоскоростных ионов, требующий относительно скромного лабораторного оснащения. Более того, проведенные опыты показывают, что этот косвенный метод многократного ускорения уже сейчас создает реальную возможность для получения в лабораторных условиях протонов с кинетическими энергиями свыше 10 эВ. С этой целью в нашей лаборатории монтируется магнит с площадками полюсов диаметром 114 см.  [c.146]

Применение данного метода будет зависеть от типа частиц, подлежащих ускорению, поскольку начальная энергия в любом случае близка к энергии покоя, В случае электронов Eg будет изменяться в процессе ускорения во много раз. Изменять частоту во столько же раз нецелесообразно. Таким образом, в этом случае следует предпочесть изменение Я, что имеет то дополнительное преимущество, что орбита должна приближаться к постоянному значению радиуса. В случае тяжелых частиц Ео будет изменяться гораздо слабее например, при ускорении протонов до 300 МэВ Ео изменяется на 30%. Поэтому при ускорении тяжелых частиц может оказаться целесообразным ия-менять частоту.  [c.412]

Из космического пространства в земную атмосферу постоянно поступает поток атомных ядер (в основном протонов) высокой энергии. Эти частицы называются первичными космическими лучами. Проходя через толщу земной атмосферы, частицы первичных космических лучей вызывают разнообразные ядерные процессы и порождают много видов вторичных частиц л-мезоны, р,-частицы, К-мезоны, гипероны и др. Вторичные частицы отличаются от первичных по своей природе и обладают меньшей средней энергией. При столкновении первичных космических лучей с атомами земной атмосферы могут также возникнуть вторичные протоны и нейтроны. Поток вторично образованных частиц в земной атмосфере называется вторичной компонентой космических лучей. На высотах ниже 20 км преимущественно (почти полностью) космические лучи носят вторичный характер.  [c.73]

В результате любого (i-процесса ((V -распада электронного захвата) число нейтронов в ядре увеличивается или уменьшается на единицу. Поэтому можно полагать, что всякий р-процесс состоит в превращении нейтрона в протон или протона в нейтрон. Чтобы применить математические методы квантовой теории переходов, используем представление о протоне и нейтроне как о разных квантовых состояниях нуклона ( 22). р-распад можно трактовать как переход нуклона из состояния с изотопическим спином + Т,, в состояние с изотопическим спином + Т . Из квантовой механики известно, что вероятность w перехода системы из одного состояния в другое за единицу времени равна  [c.243]

Для различных ядерных реакций, вызванных а-частицами, так же как и в случае ядерных реакций под действием протонов, характерно убывание сечений при больших энергиях из-за наличия конкурирующих процессов.  [c.289]

В целом протонно-протонный цикл сводится к процессу - аНе + + электронный захват + энергия (26,721 Мзв).  [c.335]


Очень существенные свойства ядерных сил получены в результате анализа углового и энергетического распределения (п — р)- и р — -рассеяний при больших кинетических энергиях (Г > 100 Мэе). В частности, анализ углового распределения рассеянных нейтронов при (п — р)-взаимодействии показал, что наблюдается слишком большое количество протонов, летящих вперед, чтобы его можно было объяснить только при помощи законов сохранения энергии и импульса без дополнительных предположений относительно механизма взаимодействия. Однако результаты опытов можно понять, если предположить, что в процессе взаимодействия нейтрона и протона они могут обменяться зарядами. В этом предположении быстрый нейтрон в момент взаимодействия забирает у протона заряд и продолжает лететь вперед (испытав сравнительно небольшое отклонение в момент взаимодействия) уже в качестве протона. Это так называемое обменное ядерное взаимодействие, которое происходит наряду с обычным ядерным взаимодействием.  [c.23]

Для всех стабильных ядер e и ер положительны. Поэтому среди них не может существовать нейтронной и протонной радиоактивности. Своеобразной нейтронной радиоактивностью (испускание запаздывающих нейтронов) может обладать ядро, перегруженное нейтронами (см. 43). Протонная радиоактивность может существовать у ядер с большим недостатком нейтронов, однако ее очень трудно обнаружить из-за сильного фона конкурирующих процессов а- и р+-распада. Недавно (август 1963 г.) группой советских физиков во главе с Г. Н. Флеровым была открыта протонная радиоактивность типа испускания запаздывающих протонов (см. 8).  [c.40]

Поскольку в ядерных процессах обычного типа число нуклонов сохраняется, то собственную четность нуклона можно выбрать любой, например положительной. Тогда состояние нуклона будет четным или нечетным в зависимости от того, описывается его движение волновой функцией с четным или нечетным 1. Например, s-протон и s-нейтрон (I = 0) будут четными, а р-про-тон и /3-нейтрон (1=1) нечетными и т. д.  [c.93]

В настоящее время известно много процессов, происходящих самопроизвольно, спонтанно. Эти процессы называются радиоактивными, так как они протекают по законам радиоактивного распада. К числу радиоактивных процессов относятся а-распад, р-распад (включая 7(-зах ват), у-излучение, спонтанное деление тяжелых ядер, а также испускание запаздывающих нейтронов и протонов.  [c.101]

Два последних вида радиоактивных превращений относятся к каскадному двуступенчатому типу, так как испускание запаздывающих нейтронов (или протонов) происходит после предварительного испускания ядром электрона (или позитрона). В связи с этим испускание нейтрона (протона) запаздывает на время, характеризующее предшествующий р-распад (хотя сам процесс испускания нуклона образовавшимся после р-распада возбужденным ядром происходит практически мгновенно).  [c.101]

Процесс 3-распада в теории Ферми рассматривается как результат взаимодействия нуклона ядра с электронно-нейтринным полем нуклон переходит в другое состояние (из нейтрона в протон или наоборот) и образуются электрон (позитрон) и антинейтрино (нейтрино). Источниками легких частиц являются нуклоны.  [c.150]

Испускание Лучей ядрами, возбужденными значительно выше энергии отделения частицы, бывает связано с запретом по четности и моменту количества движения для вылета нуклонов (или других частиц), который делает процесс испускания Y-лучей относительно более вероятным. Примером такого рода является испускание "у-лучей с энергией 17 Мэе в результате реакции + р->4Ве + у, идущей под действием s-протонов (см. 54, п. 2).  [c.165]

Если заряженная частица движется в плотной (конденсированной) среде, то, проходя мимо различных ядер этой среды в пределах р рмакс> она будет рассеиваться каждым из них на некоторый угол 6, среднее значение которого тем больше, чем меньше масса движущейся частицы (при данных z и v частиц). Этот процесс последовательных рассеяний частицы ядрами, мимо которых она движется, называется процессом многократного кулоновского рассеяния. Разумеется, проследить за всеми деталями этого процесса экспериментально невозможно. Однако можно измерить некоторое результирующее отклонение от первоначального направления частицы (угол многократного рассеяния), которое она приобретает, пройдя в среде заданный путь х, т. е. испытав некоторое определенное количество п актов рассеяния. Из предыдущего ясно, что угол многократного рассеяния тем больше, чем меньше (при прочих равных условиях) масса частицы. Так, например, след медленного электрона в фотоэмульсии из-за многократного рассеяния имеет существенно извилистый характер, в то время как след протона такой же скорости практически прямолинеен и для обнаружения эффекта многократного рассеяния нужны специальные очень точные измерения. Сильная зависимость величины угла многократного рассеяния от массы частицы может быть использована для ее определения. Для получения соответствующей формулы рассмотрим процесс многократного рассеяния более детально.  [c.229]

Правда, эта величина существенно больше, чем сечение взаимодействия быстрого нейтрона с ядрами (- 10 2 см ), однако если учесть, что в процессе взаимодействия с электроном нейтрон теряет лишь ничтожную часть своей энергии (- 10 эв), тогда как при ядерном столкновении может потерять значительную ее долю (при лобовом столкновении с протоном — всю), то становится ясно малая роль ионизационных потерь при движении нейтрона в среде.  [c.239]

Наконец, очень быстрые нейтроны (с энергией в сотни мегаэлектронвольт) получаются в процессах перезарядки протона и в реакции срыва (см. 71, л. 1).  [c.286]

Полученные результаты приведены в виде графиков. Для примера на рис. 15.12 показано распределение плотности нейтронных звезд в железе в зависимости от толщины защиты для начальной энергии протонов 70 Гэв с и различных расстояний от оси пучка (г = 0, 2, 5, 10, 20 и 30 см). Распределения проинтегрированы по бесконечной плоскости, нормальной к направлению пучка первичных протонов. В таком виде проинтегрированное распределение плотности соответствует ослаблению излучения плоского мононаправленного источника. На рис. 15.12 показано также экспоненциальное ослабление потоков первичных частиц в результате процессов неупругого взаимодействия.  [c.258]


ИХ диаметральными краями. В результате этого в течение одной половины периода электрическое поле ускоряет ионы, образовавшиеся в диаметральном зазоре и направляющиеся во внутреннюю полость одного из электродов, где под действием магнитного поля они движутся по круговым траекториям и в конце концов опять попадают в зазор между электродами. Магнитное поле задается таким образом, чтобы время, необходимое для прохождения полуокружности по траектории внутри электродов, равнялось полупериоду колебаний. Вследствие этого, когда ионы возвратятся в зазор между электродами, электрическое поле изменит свое направление, и, таким образом, ионы, входя внутрь другого электрода, приобретут еще одно приращение скорости. Поскольку радиусы траекторий внутри электродов пропорциональны скоростям ионов, время, необходимое для прохождения таким ионом полуокружности, не зависит от его скорости. Поэтому если ионы затрачивают точно половину периода на первую половину своего оборота, то они будут двигаться и дальше в таком же режиме и, таким образом, будут описывать спираль с периодом обращения, равным периоду колебаний электрического поля, до тех пор, пока они не достигнут наружного края прибора. Их кинетические энергии по окончании процесса ускорения будут больше энергии, соответствующей напряжению, приложенному к электродам, во столько раз, сколько они совершили переходов от одного электрода к другому. Этот метод предназначен главным образом для ускорения легких ионов, и в проведенных опытах особое внимание уделялось получению протонов, обладающих высокими скоростями, потому что предполагалось, что только протоны пригодны для экспериментальных исследований атомных ядер. При применении магнита с плошад-  [c.145]

С точки зрения сохранения энергии и импульса я°-мезон был создан в этом акте столкновения до этого столкновения он не существовал. Энергия для катализации создания л°-мезона была доставлена нейтроном и протоном. я -мезон может рассматриваться как созданный из вакуума — соверщенно аналогично тому, как электронно-позитронная пара создается гамма-лучом. Подробное описание механизма такого рода процессов возможно только на языке релятивистской квантовой теории. Взаимодействие между пионами (я-мезонами) и нуклонами (протонами и нейтронами) таково, что, если бы, пользуясь идеальным  [c.428]

Движение ускоряемой частицы (протона, электрона) в циклических ускорителях в действительности является сложным. Дело в том, что наличие квазиупругих сил, возвращающих частицу на орбиту (если частица почему-либо отклонится от предвычисленной орбиты, составленной из дуг радиуса г = mv/eB t, R)), и пропорциональных отклонениям х п z, приводит к тому, что ускоряемая частица в процессе своего движения колеблется около предвычисленной орбиты. Эти колебания называются бетатронньши (так как первоначально были исследованы для движения электронов в бетатроне) или свободными. В случае малых отклонений бетатронные колебания описываются линейными уравнениями  [c.72]

Р -распад. Запишем количественные соотношения ядерной нестабильности, приводящ,ей к изменению заряда ядра — к -распаду. В процессе таких превращений число нуклонов А в начальном и конечном состоянии ядра одинаково, а происходит лишь превраш е-ние нейтрона начальнбго ядра в протон конечного ядра (п р + + + v) или, наоборот, превращение протона в нейтрон (р п + V или р + е -> п + у). Таким образом, при Р-превращениях один изобар переходит в другой.  [c.100]

Некоторые ядра, перегруженные иротонамн, помимо испускания позитронов или электронного захвата, могут испытывать протонную радиоактивность, однако вероятность такого процесса мала. Для большинства легких ядер превалирует р -превраи ение. Для тяжелых ядер сильно возрастает (примерно как Z ) вероятность электронного захвата, особенно /С-захвата, вследствие уменьшения с возрастанием Z объема той области, в которой находятся /С-элек-троны. Роль электронного захвата посравнениюс Р -распадом увеличивается с уменьшением энергии перехода  [c.102]

Относительно первого этапа распада в наше время почти ничего не известно -достоверно и имеются лишь общие качественные рассуждения. Образование а-частичной группы из двух протонов и двух нейтронов происходит в кдерной материи, по-видимому, в самом процессе а-распада. Обособлению этой группы нуклонов, вероятно, способствует насыщение ядерных сил (каждый нуклон взаимодействует лишь с ограниченным числом ближайших к нему нуклонов, 22), так что образовавшаяся а-частица подвержена меньшему действию ядерных сил, и вместе с тем большему действию кулонов-ского отталкивания от протонов ядра, чем отдельные нуклоны. По-видимому, этим и объясняется самопроизвольный вылет а-частицы из ядра. Были предприняты многочисленные попытки рассмотреть процесс формирования а-частицы в ядре, были выдвинуты различные модели этого процесса, однако существенных результатов они пока не дали.  [c.228]

Прежде всего в ядерных реакциях имеет место закон сохранения электрического заряда. Полный электрический заряд (точнее, Q Ne —Ne ) ядра А и частицы а всегда равняется полному заряду продуктов реакции В -г Ь, ни в одной из наблюдавшихся реакций не отмечено нарушения этого положения. В процессе реакции возможно превращение протона в нейтрон (или наоборот), но при этом обязательно возникает позитрон или положительный мезон или же исчезает электрон. Образование электронно-иозитронных пар также подтверждает высказанное правило. При записи ядерных реакций формально это выражается в том, что суммы нижних индексов, выражаюш,их порядковый номер — заряд ядра и частицы,— в правой и левой частях уравнения ядерной реакции должны быть равны (см. реакции VH.2 и УП.З).  [c.265]

Полная ширина, характеризующая вероятность распада ядра, представляет сумму игирин Tj, Г,.....Г ,,. . . , которые соответствуют различным способам распада возбужденного ядра. Часто справа у символа Г ставится не цифровой индекс процесса, а буквенный индекс, выражающий название процесса. Например, Г — ширина уровня, отвечающая испусканию 7-кванта, Г — нейтронная ширина, Гр — протонная ширина и т. д.  [c.276]

В последние годы открыт второй сорт нейтрино, так называемое нейтрино (и антниейтригю) мюонное н которое испускается например, при распаде я-мезонов -> (i" - - v я - [i v. Имеются основания считать, что мюонное нейтрино (v,, и v j и электронное нейтрино (v , vj, о которых шла речь выше, являются разными частицами. Заметим, что электронное нейтрино определяется как частица, испускаемая в процессе р -распада протона р -> п е -f а электронное антинейтрино — частица, испускаемая при р -распаде нейтрона п - р + ё v .  [c.340]

Итак, в мире элементарных частиц выступает полная симметрия в том смысле, что для каждой частицы существует античастица. Однако окружающий нас мир (точнее, наша Галактика) не является зарядовосимметричным существующая материя содержит огромное количество электронов, протонов, нейтронов, тогда как позитроны, антипротоны, антинейтроны встречаются лишь в специальных условиях (в явлениях радиоактивности в процессах, порождаемых действием космических лучей в процессах с частицами высоких энергий, полученных на ускорителях). Некоторые ученые склонны считать, что это обусловлено несимметрией начальных условий. В вакууме, где начальные условия симметричны, электроны и позитроны (а также протоны и антипротоны и др. пары) одинаково стабильны, в полном соответствии с симметрией уравнений. Следует заметить, что преимущественная концентрация частиц по сравнению с античастицами в нашей части Вселенной пока никак  [c.375]

Физиками был сделан чрезвычайно интересный и важный вывод Вселенная представляет собой подвижную сеть неразделенно связанных энергетических процессов [3]. Если учесть, что уравнение Эйниггейна Е=т с , объединяет нонятия материи и энергии, этот вывод становится очевидным. Остается открытым вопрос все ли виды энергии мы знаем Ведь при утонении материи мы осуществляем переход от реальности существования протонов до неуловимости кварков. Не является ли это переходом к качественно иным уровням реализации энергии, которые не поддаются измерениям из-за нашей неготовности их воспринять  [c.26]


Кроме открытия нейтрона и позитрона 1932 г. был ознаменован еще одним важным достижением. Кокрофт и Уолтон построили установку для искусственного ускорения протонов и впервые наблюдали расщепление ядер лития под действием ускоренных частиц. С этого времени в руках физиков появилось мощное средство преобразования атомного ядра. Дальнейшее развитие ускорительной техники позволило ускорять электроны, дейтоны, а-частицы, а в последнее время и ионы более тяжелых элементов, таких, как азот, кислород, неон. Кроме того, во вторичных процессах с помощью ускорителей могут быть получены также быстрые нейтроны и уквангы высокой энергии.  [c.22]

В настоящее время наиболее точное значение масс нейтрона равно Шп = 1,0089860 0,0000010, а. е. м., а приближенное т 1,00898 а. е. м. = 939,5 Мэе = 1838,5 Таким образом, масса нейтрона на 2,5 Ше (на 1,3 Мэе) больше массы шротона. Поэтому энергетически возможен радиоактивный распад нейтрона на протон и электрон. Этот процесс будет рассмотрен в гл. II.  [c.36]

У ядер с большим недостатком нейтронов может существовать протонная и даже двупротонная радиоактивность, однако эти процессы пока не обнаружены из-за очень больших экспериментальных трудностей, связанных с сильным фоном конкурирующих а- и р+-распадов.  [c.101]

Известно, что свойства ядер-изобар зависят от соотношения протонов и нейтронов, содержащихся в них. Только при вполне определенном соотношении ядра имеют минимальную массу и стаби1льны. Если же протоны находятся в избытке или недостатке, то соответствующее ядро является р+- или р -радиоак-тивным. Так, например, из двух ядер и гНе первое имеет большую массу и в процессе р-распада переходит в гНе из трех ядер 4Ве °, бВ о и бС среднее имеет наименьшую массу, оно устойчиво, а два крайние — радиоактивны.  [c.277]

Новые возможности иолучения интенсивных пучков быстрых и медленных нейтронов появились после изобретения циклических ускорителей заряженных частиц и ядерных реакторов. В ускорителях получаются быстрые нейтроны при помощи (а, п)-, р, п)- или [d, п)-реакций, идущих при соударении ускоренных а-частиц, протонов или дейтонов с мишенью. В наиболее распространенных типах ядерных реакторов получаются медленные (в основном тепловые) нейтроны, которые образуются в результате замедления нейтронов, испускаемых в процессе деления ядер урана или другого ядерного горючего. В обоих случаях получаются пучки нейтронов несравненно большей интенсивности, чем с помощью нейтронных источников. В особенности интенсивные пучки нейтронов 10 нейтрКсм сек) позволяют получать ядерные реакторы, работающие в импульсном режиме.  [c.286]


Смотреть страницы где упоминается термин Протонные процессы : [c.434]    [c.266]    [c.146]    [c.425]    [c.430]    [c.176]    [c.354]    [c.285]    [c.288]   
Смотреть главы в:

Основы физики поверхности твердого тела  -> Протонные процессы



ПОИСК



Протон



© 2025 Mash-xxl.info Реклама на сайте