Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нейтронная радиоактивность

Все предыдущие формулы выведены без учета захвата нейтронов радиоактивными и стабильными продуктами деления. Л между тем такие стабильные продукты деления, как  [c.180]

Нейтронная радиоактивность 102, 308 Нейтронные источники 280, 288 Нелинейная теория Гейзенберга 387— 389  [c.394]

Для всех стабильных ядер e и ер положительны. Поэтому среди них не может существовать нейтронной и протонной радиоактивности. Своеобразной нейтронной радиоактивностью (испускание запаздывающих нейтронов) может обладать ядро, перегруженное нейтронами (см. 43). Протонная радиоактивность может существовать у ядер с большим недостатком нейтронов, однако ее очень трудно обнаружить из-за сильного фона конкурирующих процессов а- и р+-распада. Недавно (август 1963 г.) группой советских физиков во главе с Г. Н. Флеровым была открыта протонная радиоактивность типа испускания запаздывающих протонов (см. 8).  [c.40]


Прежде всего очевидно, что практически невозможна нейтронная радиоактивность. Действительно, в случае вылета нейтрона время жизни ядра может возрастать лишь за счет сравнительно слабо влияющих причин в) и г) (см. п. 4), которых недостаточно для того, чтобы увеличить характерное ядерное время с до величины, поддающейся измерению. Для ядер, сильно перегружен-  [c.205]

Рис. 26. Энергетический спектр нейтронов радиоактивного источника Рис. 26. <a href="/info/32454">Энергетический спектр</a> нейтронов радиоактивного источника
Многие элементы, которые в естественном состоянии нерадиоактивны, можно превратить в излучающие (активировать), если подвергнуть их бомбардировке ядерными частицами. Как правило, для этой цели используются нейтроны. Радиоактивное излучение каждого изотопа специфично, т. е. обладает своей энергией и своим периодом полураспада (временем, когда интенсивность излучения ослабляется вдвое). Поэтому если измерить эти характеристики, то затем с помощью таблиц легко произвести опознание . Общая активность изотопа пропорциональна числу его ядер, и это позволяет проводить количественный анализ.  [c.20]

Ядерные реакторы, генераторы нейтронов, радиоактивные источники  [c.55]

В первом типе реакторов дисперсный поток несет частицы диспергированного ядерного топлива, совмещая при проходе через активную зону свойства системы теплоотвода и системы горючего. Последнее свойство в связи с потерей критичности исчезает при движении через парогенератор. Здесь дисперсный поток выступает в основном лишь как теплоноситель, если не иметь в виду появление запаздывающих нейтронов и значительную его радиоактивность. Отрицательным также является абразивное действие твердых частиц. В качестве последних можно использовать частицы металлического легированного урана, UO2, U , материалов для воспроизводства ядерного топлива (естественный уран, торий). В качестве несущей среды возможно применение как жидкости, так и газов.  [c.390]

Наконец, в результате нейтронного облучения металл становится радиоактивным и опасным для здоровья человека.  [c.557]

Основными составляющими радиоактивного излучения являются нейтроны, протоны, дейтроны, а-частицы, р-частицы и -у-излуче-ние. Радиационные эффекты сводятся к действию излучения на металлы, коррозионную среду и процесс их взаимодействия, т. е. на электрохимическую коррозию металлов.  [c.369]


В последние годы получили развитие новые виды техники реактивная авиация, ракетная техника, атомные реакторы и др. Применяемые в них материалы подвергаются действию высоких температур, высоких скоростей нагружения, агрессивных жидких и газообразных сред, радиоактивных, особенно нейтронных, проникающих облучений. Для работы в этих условиях создают новые специальные сплавы и композиционные материалы.  [c.111]

Радиационный контроль металла и сварных соединений производится также гамма-излучением, образуемым при распаде ядер радиоактивных материалов - изотопов. При контроле пользуются искусственными изотопами, которые получают при бомбардировке ядер элементов нейтронами.  [c.189]

Спектры у-излучения, образующегося при захвате тепловых нейтронов, приведены в табл. 9.4. При ее составлении использованы данные работ [12, 19]. Поскольку захват нейтрона часто приводит к образованию радиоактивного ядра с последующим испусканием у-квантов, значения интенсивности у-квантов, образующихся при радиоактивном распаде, были добавлены к значениям интенсивности захватного у-излучения в соответствующих энергетических интервалах (в тех случаях, когда период полураспада порядка часа или меньше). В табл. 9.4 приведены также значения сечений радиационного захвата при средней энергии тепловых нейтронов, которая равна 0,025 эв.  [c.28]

Гамма-излучение продуктов активации. Во многих случаях при нейтронных реакциях остаточные ядра являются радиоактивными. При распаде (чаще всего р-распад) эти ядра испускают у-кванты, которые следует учитывать при расчете защиты. Обычно такие источники существенны при остановке реактора, а также при расчете защиты контура теплоносителя, в том числе п при работающем реакторе (см. гл. X).  [c.32]

Теплоноситель, проходя через активную зону реактора с интенсивными потоками нейтронов различных энергий, активируется. В ряде случаев активация ядер, входящих в состав теплоносителя, незначительна по сравнению с активацией ядер примесей в теплоносителе. Примесями являются продукты коррозии внутренних поверхностей стальных стенок оборудования, а также загрязнения, вносимые в теплоноситель в процессе технологии его приготовления. Продукты коррозии внутренних поверхностей активной зоны поступают в теплоноситель в виде радиоактивных примесей.  [c.86]

Продуктами деления называют искусственные радиоактивные изотопы, образующиеся в результате деления (расщепления) ядер урана, плутония и других тяжелых элементов под действием нейтронов. Это название приписывается также тем изотопам, которые образовались из первоначальных продуктов деления в результате радиоактивных превращений.  [c.169]

Как уже отмечалось, при расщеплении нейтронами ядер урана, плутония, тория, трансплутониевых и других тяжелых элементов образуются осколки, которые в результате радиоактивных превращений создают изобарные цепочки продуктов деления. К факторам, определяющим величину активности продуктов деления, относят вид деления, выход у, количество актов деления в единицу времени р (или мощность реактора),  [c.174]

Позитрон возникает в атомном ядре в результате превращения одного из протонов в нейтрон. Энергию, необходимую для такого превращения, протон полу чает от других протонов и нейтронов ядра. Последующие опы-чы по бомбардировке атомных ядер стабильных изотопов альфа-частицами, протонами, нейтронами и другими частицами показали, что искусственные радиоактивные изотопы могут быть получены у всех без исключения элементов.  [c.323]

Распад нестабильных частиц сильно отличается от тех видов разрушения, или распада, которые мы обычно наблюдаем. Вероятность смерти в течение ближайшего часа выше для пожилого человека, чем для молодого бактерия не испытывает деления непосредственно после своего рождения и делится только по истечении определенного времени старый автомобиль сломается скорее, чем новый. Во всех этих случаях вероятность того или иного вида распада зависит, в частности, от предыстории объекта, имеющейся к данному моменту объекты, просуществовавшие дольше, более склонны испытать то или иное разрушение. С другой стороны, бесспорным экспериментальным фактом является то обстоятельство, что вероятность распада элементарной частицы, или ядра любого радиоактивного изотопа, или, наконец, возбужденного атома или молекулы не зависит от продолжительности существования частицы. Свободный нейтрон нестабилен, но длительно существовавший нейтрон ничем не отличается от нейтрона, только что ставшего свободным. Предсказать момент распада заданной нестабильной частицы невозможно. Воспроизводимое значение имеет лишь среднее время жизни, установленное для большого числа частиц.  [c.435]


В этот период продолжается изучение явления радиоактивности. В 1934 г. И. Кюри и Ф. Жолио-Кюри открыли явление искусственной радиоактивности, имеющее большое теоретическое и практическое значение. В том же году Э. Ферми создает теорию [i-pa -пада и открывает явление искусственной радиоактивности, вызванное нейтронами, исследует свойства медленных нейтронов.  [c.12]

Под действием нейтронов космического излучеиия некоторая часть ядер азота земной атмосферы (примерно 1,8 ядра на 1 кг воздуха в 1 сек) превращаются в ядра радиоактивного углерода  [c.16]

Известные в наше время атомные ядра можно разделить на две группы 1) стабильные (устойчивые) ядра и 2) нестабильные (радиоактивные). Стабильные ядра — это такие ядра, для которых спонтанный распад и превращения являются энергетически невозможными. В реально существующих стабильных ядрах обычно число нуклонов одного сорта находится в определенном соотношении с числом нуклонов другого сорта. Так, например, в стабильных ядрах при у4 < 36 число нейтронов и протонов примерно одинаково, а нейтронный избыток (изотопическое число) --- 1/2 N — Z)  [c.98]

Энергетическая неустойчивость ядер, сопровождающаяся изменением электрического заряда ядра без изменения его массового числа, связана с превращением в ядре протона в нейтрон (р -> п + - - е + V) или нейтрона в протон (п р + Н- v). При этих превращениях рождаются и выбрасываются во вне электрон е и антинейтрино (v) или позитрон е ) и нейтрино (v). Этот вид неустойчивости проявляется как бета-распад. К бета-распаду относятся Р -распад (электронная радиоактивность), -распад (позитронная радиоактивность) и электронный захват с /С или L электронных оболочек атома.  [c.99]

Для обнаружения дефектов применяются различные виды ионизирующих излучений рентгеновское, гамма-излучение более редко - нейтронное, бетатронное. При предъявлении высоких требований к качеству используют по преимуществу рентгенографию, при контроле соединений в полевых, монтажных условиях, а также при анализе дефектов весьма больших толщин применяют гамма-графирование. Бе-татронная радиография используется также при контроле больших толщин нейтронная - радиоактивных элементов.  [c.189]

Причина появления запаздывающих нейтронов состоит в том, что осколки, возникшие при делении, радиоактивны, и в результате превращений образуются такие ядра, в которых содержится избыток энергии, достаточный для испарения нейтронов. Радиоактивность возникающих осколквв обусловлена тем, что они имеют большой избыток нейтронов над протонами по сравнению с ядрами  [c.308]

Интенсивность у-нейтронных радиоактивных источников примерно на два порядка ниже а-нейтронных, но зато они сравнительно моноэнергетичны благодаря тому, что при одной и той же энергии порядка нескольких МэВ импульс фотона почти на два порядка меньше импульса t-частицы. Комбинируя различные у-излучатели с дейтерием и бериллием, можно получать нейтроны различных энергий от 0,12 до 0,87 МэВ Характеристики некоторых у-нейтрон-ных источников приведены в табл. 9.1.  [c.484]

Методы переноса изображения Нейтронная радиография Ядерные реакторы, генераторы нейтронов радиоактивные источники Активируемые зкр аны-преоб-разователи и радиографиче-.ские пленки Радиоактивные изделия. Изделия из легких материалов, расположённые за оболочками из тяжелых металлов. Композиционные материалы Нечувствительность метода к сопутствующему излучению, источником которого является изделие или окружающие предметы. Возможность обнаруживать различные изотопы одного и того же элемента. Прозрачность для нейтронов тяжелых металлов и непрозрачность легких материалов Громоздкость радиографического оборудования при использовании выведенного из ядерного реактора потока нейтронов. Малая плотность потока нейтронов у генераторов, что ограничивает создание передвижных устройств  [c.308]

Фотонейтронные источники. Лишь для двух ядер, Н и Ве, можно подобрать радиоактивные излучатели Y-квантов, такие, у которых энергия Y-квантов Е- была бы выше порога реакции (у, п). Поэтому все радиоактивные (Y, )-источники содержат в качестве материала мишени дейтерий или бериллий [2]. Сечения реакций (Y, п) приведены на рис. 40.1. В принципе (за исключением разброса из-за различия в направлениях у-квактов и испускаемых нейтронов) радиоактивные фотонейтронные источники позволяют получить моноэнергетические нейтроны- Энергия фотонейтронов может быть оценена из [2]  [c.891]

Радиационный контроль сварных соединений производится также гамма-излучением, образуемым при распаде ядер радиоактивных материалов — изотопов. При контроле пользуются искусственными изотопами, которые получают при бомбардировке ядер элементов нейтронами. Последние присоединяются к атому и приводят его в неустойчивое состояние, переходяп1 ее в распад.  [c.115]

В томе I, изданном Атомиздатом в 1969 г., приведены общие сведения по физике защиты, безотносительно к определенным источникам. В их числе единицы радиоактивности, предельно допустимые уровни ионизирующих излучений, взаимодействие излучений с веществом, численные, аналитические и полуэмпи-рические методы расчета прохождения излучения в радиационной защите, характеристики поля первичного и многократно рассеянного у- и нейтронного излучений в источнике и в защитных средах, инженерно-физические методы расчета защиты.  [c.5]


Из реакторов на быстрых нейтронах наиболее освоены реакторы с натриевым теплоносителем. Высокая радиоактивность натриевого теплоносителя и его химическая активность требуют особых мер предосторожности при выборе материалов защиты реактора. Это исключает возможность использования в защите реактора такого высокоэффективного защитного материала, как вода, взаимодействий с которой может создать опасные ситуации [58]. Вопросы безопасности быстрых реакторов предъявляют особые требования к использованию в защите и других водородсодержащих материалов с точки зрения их попадания в активную зону реактора, что может привести к опасным колебаниям реактивности. Большие трудности возникают при организации эффективного теплосъема верхней защиты.  [c.83]

Активность теплоносителя обусловливает необходимость сооружения защиты вокруг него. Как правило, наиболее мощным оказывается у-излучение радиоактивных ядер теплоносителя. Поэтому защита теплоносителя проектируется прежде всего как защита от у-источников. Вторым по мощности проникающим излучением является нейтронное излучение. Оно может быть результатом распада ядер N , образующихся вследствие реакции (п, p) N или распада некоторых короткоживущих продуктов деления. Во всех случаях энергия нейтронов относительно небольщая и необходимость в специальной защите от них возникает лишь в отдельных случаях. Роль защиты от нейтронов, как правило, выполняет защита от у-квантов.  [c.87]

Теплоноситель циркулирует по замкнутому контуру. При этом на участках с интенсивным нейтронным излучением (активная зона) происходит рождение и распад радиоактивных ядер, а на других участках — преимущественно распад ядео. Отсюда следует, что расчет активации теплоносителя не может  [c.87]

Наибольшее значение, особенно для энергетических реакторов с большой удельной мощностью и продолжительностью кампании, имеет Сз . Кроме стабильных изотопов большим сечением захвата обладают некоторые радиоактивные продукты деления, особенно Хе з (T /2=9,l8 ч), имеющий максимальное сечение поглощения тепловых нейтронов (аа = 2,7-10 барн). Поглощение нейтронов стабильными или долгоживущими изотопами называют защлаковыванием, а поглощение относительно короткоживущими радиоактивными ядрами — отравлением. Более подробно эти вопросы рассмотрены в работе [8].  [c.174]

Если продукты деления образовались в реакторе с небольшой удельной мощностью (несколько киловатт на килограмм) и в результате сравнительно небольшой кампании (7< 180 дней), то горючее доступно для переработки уже через несколько месяцев. Например, после четырехмесячной выдержки удельная активность смеси продуктов деления уменьшается примерно в 30 раз, а у-эквивалент —в 50 раз [1]. С точки зрения защиты большой срок выдержки необходим еще и для того, чтобы максимально распались летучие продукты деления — изотопы радиоактивного иода (в основном 1 с 7 )/2 = 8,05 дня) и ксенона (в основном Хе с 7)/2 = 5,29 дня). Кроме того, такая выдержка необходима для распада изотопа Ва , дочерний продукт которого Еа имеют наиболее проникающие у-кванты (период полураспада Ва 71/2=12,8 дня). На рис. 13.4 показано изменение эффективного спектра у-излучения смеси продуктов деления в реакторе на тепловых нейтронах [1] в зависимости от 7 и 7 Видно, что наиболее проникающая компонента с эффективной энергией 1 = 2,25 Мэе дает минимальный вклад при выдержке /= 1004-150 дней. Дальнейшее возрастание вклада жесткой компоненты происходит главным образом вследст-  [c.190]

В случае теплоносителя — обычной воды основной проблемой при работе реактора является защита от излучения самой воды. Наибольшим по удельной активности и интенсивности испускания проникающего излучения оказы-пается у-излучение ядер N . Эти ядра образуются в результате реакции О (я, p)N происходящей на быстрых нейтронах (энергия более 11,6 Л1эо). Радиоактивные ядра распадаются с периодом полураспада 7,35 сек (постоянная распада Л = 0,094 сек )- Каждый распад ядра сопровождается испусканием у-кваятов  [c.316]

Искусственвая радиоактивность. Французские физики Фредерик Жолио-Кюри (1900—1958) иИрен Жолио-Кюри (1897—1956) в 1934 г. обнаружили, что при облучении потоком альфа-частиц ядра изотопа алюминия JjAl превращаются в ядра изотопа фосфора 1 , при этом испускаются свободные нейтроны  [c.323]


Смотреть страницы где упоминается термин Нейтронная радиоактивность : [c.717]    [c.75]    [c.206]    [c.177]    [c.11]    [c.11]    [c.43]    [c.95]    [c.97]    [c.173]    [c.181]    [c.317]    [c.176]   
Смотреть главы в:

Экспериментальная ядерная физика Кн.2  -> Нейтронная радиоактивность


Основы ядерной физики (1969) -- [ c.102 , c.308 ]

Введение в ядерную физику (1965) -- [ c.40 ]



ПОИСК



Газ радиоактивный

Нейтрон

Образование нейтронов и радиоактивных осколков в результате деления ядер

Радиоактивность

Радиоактивные источники быстрых нейтронов

Радиоактивный быстрых нейтронов



© 2025 Mash-xxl.info Реклама на сайте