Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТЕПЛОВЫЕ ВОЛНЫ Теплопроводность вещества

Теория теплопроводности основана на представлении о переносе теплоты в твердых неметаллических телах тепловыми упругими волнами—фононами. Теплопроводность вещества зависит от длины. свободного пробега фононов и степени нарушения гармоничности колебаний тепловых волн во время их прохождения через данное вещество. В связи с этим степень теплопроводности определяют структура вещества, число и вид ато-MQB и ионов, рассеивающих волновые колебания. Кристаллы с более сложным строением решетки, как правило, имеют более низкую теплопроводность, так как степень рассеивания тепловых упругих волн в такой решетке больше, чем в простой. Снижение теплопроводности наблюдается также при образовании твердых растворов, так как при этом возникают дополнительные центры рассеивания тепловых упругих волн. В стеклах, характеризующихся разупорядоченным строением, длина пробега фононов ае превышает межатомных расстояний, и теплопроводность стекла соответственно меньше, чем теплопроводность керамического материала, содержащего, как правило, значительное количество кристаллических фаз.  [c.11]


При инициировании тепловых волн с учетом движения вещества, как и в известных решениях задачи о поршне в теплопроводном газе или в упомянутых ранее решениях той же задачи в реагирующем газе, могут осуществляться два конкурирующих механизма распространения тепловой волны. В случае, когда начальная энергия значительно превышает пороговую, основной перенос тепла и тепловыделение происходит в волне, распространяющейся вследствие теплопроводности. Роль движения газа в основной части волны невелика. За основной частью тепловой волны может в некоторых случаях образоваться изотермическая ударная волна, имеющая существенно меньшую скорость, чем фронт тепловой волны, и играющая второстепенную роль в ее распространении. Если начальная энергия незначительно превышает критическую, то на ранней стадии формирования тепловой  [c.157]

Влияние гиперболичности уравнения теплопроводности. Известно, что распространение тепла описывается уравнением параболического типа. Однако при воздействии на материалы импульсов нано- и пикосекундного диапазона скорость протекающих процессов такова, что энергия, поглощенная веществом, не успевает перераспределиться между поглощающими излучение электронами и более инерционными атомами решетки. Таким образом, за промежутки порядка 10 св микрообъеме среды не сразу устанавливается тепловой поток как это предсказывает классический закон Фурье. При приложении градиента температур поток будет нарастать постепенно от нуля до максимума, и для описания процесса теплопроводности необходимо использовать модифицированное уравнение Фурье (1.13). В этом случае из уравнения энергии после отбрасывания тепловых и электронных слагаемых, а также слагаемых, связанных с деформацией среды, следует гиперболическое уравнение, определяющее Г. Из гиперболичности уравнения вытекает возможность формирования и существования в среде тепловой волны [31, 166].  [c.179]

Линейный подход. Рассмотрим действие на тело коротковолнового излучения. Оно поглощается в достаточно глубоком слое вещества, поэтому моделировать возникающие тепловые поля необходимо с учетом появляющихся в материале источников тепла. Исследование формирования и распространения генерируемых при действии указанного излучения на медные зеркала тепловых волн и волн напряжений выполнено в [89]. Распространение тепла в указанных зеркалах описывалось модифицированным законом Фурье. В уравнение теплопроводности вводятся объемные источники тепла, внезапно нагревающие твер-  [c.184]


До сих пор мы рассматривали распространение тепла в среде с нулевой начальной температурой. Если Tq Ф ), то коэффициент нелинейной теплопроводности в невозмущенном веществе конечен и закон спадания температуры отличен от (10.22) однако практически при небольших начальных температурах коэффициент лучистой теплопроводности при Т = столь мал, что этим эффектом можно пренебречь. Гораздо существеннее отмеченная выше неравновесность излучения на переднем краю тепловой волны, которая приводит к экспоненциальному спаду температуры Т вместо степенного закона (10.22).  [c.514]

В терминах теплопроводности это означает, что по веществу первой стенки распространяется неравновесная тепловая волна, вызванная излучением термоядерного микровзрыва. Время прогрева слоя толщиной Ло можно оценить из соотношения дст/( оЛо), где ст — плот-  [c.135]

Решение (2.8) описывает остановившуюся ( ) тепловую волну (см. рис. 5. Здесь и далее, если это специально не оговорено, значения моментов времени и параметров даны в условных единицах). Будем называть его S-режимом. В этом режиме при ->0 в вещество поступает неограниченное количество энергии, температура и коэффициент теплопроводности при всех О < x ,xs стремятся к бесконечности.  [c.24]

Эти колебания в реальных веществах имеют затухающий характер, в связи с чем наблюдаются затухание тепловых упругих волн и невысокое значение коэффициента теплопроводности. В теории теплопроводности предполагается, что колебания нормального вида квантуются. В дискретной кристаллической решетке связь между ангармоническими колебаниями приводит к взаимодействию фононов между собой. Для описания этого процесса можно воспользоваться понятием длины свободного пробега. По аналогии с кинетической теорией газов теплопроводность твердого тела можно предста-  [c.157]

Рассматривая в 93 строение ударной волны, мы по существу предполагали, что коэффициенты вязкости и температуропроводности — величины одного порядка, как это обычно и бывает. Возможен, однако, и случай, когда .Именно, если температура вещества достаточно высока, то в теплопроводности будет участвовать добавочный механизм — лучистая теплопроводность, осуществляемая находящимся в равновесии с веществом тепловым излучением. На вязкости же (т. е. на переносе импульса) наличие излучения сказывается в несравненно меньшей степени, в результате чего v и может оказаться малым по сравнению с х- Мы увидим сейчас, что наличие такого неравенства приводит к весьма существенному изменению структуры ударной волны.  [c.497]

Теплопроводность представляет собой перенос теплоты, осуществляемый посредством теплового движения структурных частиц вещества (атомов, молекул, электронов). В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих разную скорость теплового движения. В металлах такими структурными частицами являются свободные электроны, в жидкостях и твердых телах (диэлектриках) теплота переносится путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества в форме упругих волн.  [c.148]

Данная книга ни в коей мере не заменяет и не дублирует существующий справочник по теплотехнике и теплопередаче, так как, во-первых, методически она построена по иному принципу и, во-вторых, в основном рассматривает взаимосвязанные процессы тепломассопереноса и математическую теорию переноса, которая в одинаковой мере применима к переносу как тепла, так и массы вещества. Вследствие этого вопросы передачи тепла излучением, задачи чистого теплообмена и ряд других разделов теплопередачи в книге не рассматриваются. Большое внимание уделяется аналитической теории переноса тепла и массы, в частности нестационарным задачам теплопроводности (разд. 2), где путем введения обобщенных функций удалось одновременно описать одномерные температурные поля в телах классической формы, по-новому, в более простом виде, описать распространение температурных волн, дать обобщение регулярным режимам теплового нагрева тел и ряд других обобщений. На основе дальнейшего развития аналитической теории теплопроводности приведены последние работы по решениям системы дифференциальных урав-  [c.4]


Поэтому данная книга ни в коей мере не заменяет и не дублирует существующий справочник по теплотехнике и теплопередаче, так как, во-первых, методически она построена по иному принципу и, во-вторых, в основном рассматривает взаимосвязанные процессы тепломассопереноса и математическую теорию переноса, которая в одинаковой мере применима к переносу как тепла, так и массы вещества. Вследствие этого вопросы передачи тепла излучением, задачи чистого теплообмена и ряд других разделов теплопередачи в книге не рассматриваются. Большое внимание уделяется аналитической теории переноса тепла и массы, в частности нестационарным задачам теплопроводности (разд. 2), где путем введения обобщенных функций удалось одновременно описать одномерные температурные поля в телах классической формы, по-новому, в более простом виде, описать распространение температурных волн, дать обобщение регулярным режимам теплового нагрева тел и ряд других обобщений. На основе дальнейшего развития аналитической теории теплопроводности приведены последние работы по решениям системы дифференциальных уравнений тепломассопереноса (разд. 6), подробно рассмотрены гиперболические уравнения диффузии тепла и массы с учетом конечной скорости распространения. Установлена связь этого нового направления в описании явлений тепломассопереноса с работами американской школы по диффузии массы в пористых средах.  [c.4]

Термомеханическое поведение материала, на который падает тепловой импульс, во многом определяется длиной волны и мощностью излучения. Длина волны связана с глубиной поглощения импульса тепла материалов за время, когда теплопроводность еще не успевает проявить себя. Мощность излучения определяет возникающие в среде температуру и давление, а следовательно, и фазовое состояние вещества. Важно помнить, что в весьма широком диапазоне температур и давлений вещество не проявляет прочностных свойств. При температурах порядка 10 —10 К вещество находится в плазменном, а при 10 — 10 К — в газообразном состоянии. Только в конденсированном (жидком или твердом) состоянии, которое может иметь место вплоть до температур порядка 10 К вещество имеет свойство прочности. Точно так же уменьшаются прочностные свойства сред с увеличением давления. При увеличении давления от величин порядка 10 МПа свойства среды все более точно описываются моделями жидкости или газа. В данной выше постановке задачи учитывается изменение термомеханических процессов в среде в зависимости от / и Г. Определенную помощь в предварительной оценке взаимовлияния различных физических процессов может оказать время их протекания. Процессы поглощения излучения, испарения, установления тепла, возникновения волн напряжений, затухания тепловых фронтов являются разновременными и часто их можно рассматривать независимо. Кроме того, несмотря на существование в принципе взаимовлияния много физических процессов, на различных временных или пространственных интервалах основное влияние на прочность может оказывать один или несколько из них.  [c.179]

Скорость распространения УЗ-вых волн в неограниченной среде определяется характеристиками упругости и плотностью среды (см. Скорость звука). В ограниченных средах на скорость распространения волн влияет наличие и характер границ, что приводит к частотной зависимости скорости, т. е. к дисперсии скорости звука. Уменьшение амплитуды и интенсивности УЗ-вой волны по мере её распространения в заданном направлении, т. е. затухание звука, обусловливается, как и для волн любой частоты, расхождением фронта волны с удалением от источника (см. Звуковое поле), рассеянием и поглощением звука, т. е. переходом звуковой энергии в другие формы, и в первую очередь в тепловую. На всех частотах как слышимого, так и неслышимых диапазонов имеет место т, н. классическое поглощение, обусловленное сдвиговой вязкостью (внутренним трением) и теплопроводностью среды. Кроме того, почти во всех средах существует дополнительное (релаксационное) поглощение, обусловленное различными релаксационными процессами в веществе (см. Релаксация) и часто существенно превосходящее классическое поглощение. Относительная роль того или иного фактора при затухании звука зависит как от свойств среды, в к-рой звук распространяется, так и от характеристик самой волны, и в первую очередь от её частоты.  [c.10]

Поглощение звука может быть обусловлено различными механизмами. Большую роль играет вязкость и теплопроводность среды, взаимодействие волны с различными молекулярными процессами вещества, с тепловыми колебаниями кристаллич. решётки и др. 3. 3., обусловленное рассеянием и поглощением, описывается экспоненциальным законом убывания амплитуды с расстоянием, т. е. амплитуда пропорциональна а интенсивность — в—в отличие от степенного закона убывания амплитуды прп расхождении волны. Коэфф. 3. з. 6 выражается в единицах см или в логарифмич. единицах Нп/см или дБ/см.  [c.135]

Наиболее далеко идущим прогнозом, следующим из модели Тисса, явилось предсказание существования тепловых волн в жидкости—явления, ставшего впоследствии известным под названием второго звука . Формальное рассмотрение двух взаимопроникающих жидкостей, обладающих разной энтропией, приводит к волновому уравнению для неоднородностей температуры вместо диссипативного уравнения теплопроводности. Тисса предположил поэтому, что нарушения равновесной концентрации двух жидкостей будут выравниваться посредством волнового движения, а но посредством диффузии. Это волновое движение, как и следовало ожидать, будет несколько похоже на акустический звук с той существенной разницей,, что при этом не будет происходить заметных колебаний плотности жидкости. Вместо них будут наблюдаться колебания относительной плотности двух жидкостей, т. е. колебание температуры. С этой точки зрения подходящим параметром для характеристики диссипации тепловых импульсов в Не II является не теплопроводность вещества, а скорость распространения в нем тепловых волн. На основании своей модели Тисса предположил, что эта скорость будет возрастать от нуля в Х-точке до максимума примерно при 1,5" К и затем уменьшаться при дальнейшем нонижении температуры.  [c.803]


Если волна давления опережает тепловую волну, идущую от зоны тепловыделения, то в волне давления газ адиабатически сжимается и температура его возрастает. Как следствие, увеличивается скорость экзотермических реакций в газе и в нем происходит интенсивное тепловыделение. Скорость распространения волны тепловыделения такого вида определяется скоростью распространения волны повышения давления в газе. В дальнейшем (в гл. И) будет установлено, что волны непрерывного повышения давления в газе распространяются со скоростью звука и имеют тенденцию превращаться в разрывы—скачки уплотнения, скорость распространения которых по газу сверхзвуковая. Таким образом, механизм, о котором идет речь, приводит к сверхзвуковой скорости распространения зон тепловыделения по газу. Этот механизм может быть не связан с физикохимическими процессами переноса энергии и вещества на молекулярном и субмолекулярном уровнях он может приводить к распространению зоны экзотермических химических реакций и при полном отсутствии теплопроводности и диффузии.  [c.111]

Теплопроводность опре деляется тепловым движением микрочастиц тела, т. е. движением микроструктурных частиц вещества (молекул, атомов, ионов, электронов). Обмен энергией между движущимися частицами происходит в результате непосредственных столкновений их при этом молекулы более нагретой части тела, обладающие большей энергией, сообщают долю ее соседним частицам, энергия которых меньше. В газах перенос энергии происходит путем диффузии молекул и атомов, в жидкостях и твердых диэлектриках — путем упругих волн. В металлах перенос энергии осуществляется колеблющимися ионами решетки и диффузией свободных электронов ( электронным газом ) значение упругих колебаний кристаллической рещетки в этом случае не имеет большого значения.  [c.134]

Тепловое излучение — процесс распространения теплоты с помощью электромагнитных волн, обусловленный только температурой и оптическими свойствами излучающего тела при этом внутренняя энергия тела (среды) ттереходит в энергию излучения. Процесс превращения внутренней энергии вещества в энергию излучения, переноса излучения и его поглощения веществом называется теплообменом излучением. В природе и технике элементарные процессы распространения теплоты — теплопроводность, конвекция и тепловое излучение — очень часто происходят совместно. -  [c.5]

Большинство твердых и жидких тел имеет сплошной (непрерывный) спектр излучения, т. е. излучают энергию всех длин волн от О до оо. К твердым телам, имеющим непрерывный спектр излучения, относятся непроводники и полупроводники электричества, металлы С окисленной шероховатой поверхностью. Металлы с полированной поверхностью, газы и пары характеризуются селективным (прерывистым) спектром излучения. Интенсивность излучения зависит от природы тела, его температуры, длины волны, состояния поверхности, а для газов — еще от толщины слоя и давления. Твердые и жидкие тела имеют значительные поглощательную и излучательную способности. Вследствие этсго в процессах лучистого теплообмена участвуют лишь тонкие поверхностные слои для непроводников тепла они составляют около 1 мм для проводников тепла — 1 мкм. Поэтому в этих случаях тепловое излучение приближенно мо) но рассматривать как поверхностное явление. Полупрозрачные тела (плавленый кварц, стекло, оптическая керамика и др., газы и пары) характеризуются объемным характером излучения, в котором участвуют все частицы объема вещества. Излучение всех тел зависит от температуры. С увеличением температуры тела его энергия излучения увеличивается, так как увеличивается внутренняя энергия тела. При этом изменяется не только абсолютная величина этой энергии, но и спектральный состав. При увеличении температуры повышается интенсивность коротковолнового излучения и уменьшается интенсивность длинноволнового излучения. В процессах излучения зависимость от температуры значительно большая, чем в процессах теплопроводности и конвекции. Вследствие этого при высоких температурах основным видом переноса может быть тепловое излучение.  [c.362]


Смотреть страницы где упоминается термин ТЕПЛОВЫЕ ВОЛНЫ Теплопроводность вещества : [c.553]    [c.137]    [c.267]    [c.522]    [c.70]    [c.165]    [c.421]   
Смотреть главы в:

Физика ударных волн и высокотемпературных гидродинамических явлений  -> ТЕПЛОВЫЕ ВОЛНЫ Теплопроводность вещества



ПОИСК



Тепловые волны

Теплопроводность веществ



© 2025 Mash-xxl.info Реклама на сайте