Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ионизация и электронное возбуждение

Упоминавшийся разрыв непрерывности в общем случае подразумевает, что толщина ударного фронта имеет порядок нескольких длин среднего свободного пробега молекул в среде перед ударным фронтом. В случае очень сильных скачков использование термина средняя длина свободного пробега как меры толщины ударного фронта едва ли будет верным из-за возбуждения внутренних степеней свободы молекул, составляющих среду. Например, в сильном скачке в воздухе происходит не только возбуждение вращательных и поступательных уровней энергии, но при достаточно высоких интенсивностях скачка может иметь место диссоциация молекул, ионизация и электронное возбуждение. Эти процессы происходят одновременно, и эффективные длины свободного пробега для каждого процесса будут разными.  [c.23]


Следует различать измерения обратимые, имеющие место только во время действия излучения, и необратимые, сохраняющиеся после прекращения облучения. Обратимые изменения свойств обусловлены физическими процессами, протекающими во время облучения (ионизация и электронное возбуждение). Необратимые изменения свойств являются следствием химических процессов, прошедших в результате облучения.  [c.430]

Ионизация и электронное возбуждение  [c.166]

ИОНИЗАЦИЯ И ЭЛЕКТРОННОЕ ВОЗБУЖДЕНИЕ 167  [c.167]

ИОНИЗАЦИЯ И ЭЛЕКТРОННОЕ ВОЗБУЖДЕНИЕ 169  [c.169]

Состояние газа зависит от концентраций различных компонент атомов, молекул, ионов, электронов и распределения внутренней энергии по степеням свободы. В общем случае внутренняя энергия газа складывается из энергии поступательного движения частиц, вращательной и колебательной энергии молекул, химической энергии, энергии ионизации и электронного возбуждения атомов, молекул, ионов. В условиях полного термодинамического равновесия состояние полностью определяется элементным составом газовой смеси и значениями двух каких-нибудь макроскопических параметров, например, плотности и удельной внутренней энергии.  [c.298]

Как уже было отмечено выше, времена релаксации для установления равновесия в различных степенях свободы часто очень сильно различаются. Если при данных температуре и плотности переходить от быстрых к более медленным релаксационным процессам, то обычно можно установить такую последовательность поступательные степени свободы, вращения молекул, колебания молекул, диссоциация и химические реакции, ионизация и электронное возбуждение.  [c.299]

На рис. 256 даны кривые, представляющие усиление различных линий РЬ II при переходе от свечения чистых паров свинца, возбуждаемых быстрыми электронами, к свечению смеси паров свинца и неона. Весьма характерно различное поведение линий разных серий. Вероятнее процесс возбуждения линий РЬ II в том случае, когда энергия иона неона больше энергии, необходимой для ионизации и одновременного возбуждения атома свинца.  [c.466]

Большим изменениям подвергся раздел 3 гл. VI, в котором рассматриваются вопросы ионизации, рекомбинации, электронного возбуждения. Этот раздел по существу написан заново и сильно расширен с учетом современных взглядов, согласно которым в этих процессах большую роль играют ступенчатая ионизация атомов (сначала возбуждение, потом ионизация) и захват электрона при тройных столкновениях на верхние уровни атомов с последующей дезактивацией возбужденных атомов за счет электронных ударов и радиационных переходов. Подробнее рассмотрена ионизация воздуха. Изменилось и изложение близких вопросов ионизации газа в ударной волне (в гл. VII).  [c.9]


В первом приближении число таких дефектов, вызванных смещениями атомов в кристаллической решетке, пропорционально анергии, переданной веществу нейтронами при их замедлении. Действительно, при малых энергиях атомов отдачи их столкновения с другими атомами являются в основном упругими. Однако с ростом их энергии увеличивается вероятность неупругих столкновений, при которых энергия может передаваться в форме электронного возбуждения или ионизации. Таким образом, часть энергии расходуется не на повреждение кристаллической решетки. Кроме того, отклонение энергетической зависимости радиационной эффективности нейтронов от линейного закона обусловлено колебаниями энергетической зависимости сечений рассеяния, наличием анизотропии рассеяния и неупругого рассеяния нейтронов. Результирующая относительная энергетическая зависимость радиационной эффективности нейтронов 2д( ) в образовании элементарных дефектов для энергий Е> >0,1 Мэе приведена на рис. 9.19, кривая 1 (при нормировке  [c.70]

Наоборот, такие вещества, как ртуть (потенциал возбуждения 4,9 В) или водород (потенциал возбуждения 10, 15 В), нельзя сколько-нибудь заметно возбудить в пламени горелки. В пламени, температура которого выше, можно наблюдать линии и с более высокими потенциалами возбуждения. Так, в столбе электрической дуги, горящей при достаточно высоком давлении (например при атмосферном), удары ионов и электронов, летящих под действием электрического поля, сообщают молекулам газов и паров, составляющих столб дуги, значительную кинетическую энергию, в результате чего в дуге устанавливается высокая температура (6000—7000 К), обеспечивающая в свою очередь ионизацию, достаточную для про-  [c.742]

Основным механизмом возбуждения и ионизации атомов в полом катоде являются неупругие столкновения с электронами. Заметную роль в ионизации, а в ряде случаев и в возбуждении атомов исследуемого вещества, могут также играть соударения с возбужденными атомами инертных газов, находящихся в долгоживущих (метастабильных) состояниях. Гелий обладает наиболее высоким потенциалом возбуждения (19,8 эВ) и потенциалом ионизации (24,6 эВ). Вследствие этого средняя энергия электронов, характеризуемая электронной температурой, в разряде с гелием выше, чем с другими инертными газами. Поэтому в разряде с гелием удается получать спектры трудновозбудимых элементов и их ионов. Наоборот, в случае легковозбудимых элементов лучшие результаты дает использование более тяжелых газов, например аргона, поскольку они вызывают более интенсивное катодное распыление.  [c.74]

Основными физическими величинами, характеризующими прохождение тяжелых частиц, являются потери энергии —dE/dx на единицу пути и полный пробег R частицы в веществе. Частица может терять энергию различными способами (столкновения с электронами, кулоновские столкновения с ядрами, ядерные столкновения с ядрами и т. д.). Соответственно полные потери получаются суммированием потерь, обусловленных различными механизмами. Как мы уже упоминали, для тяжелых заряженных частиц основ-ньши являются потери за счет ионизации и возбуждения атомных электронов вещества. Эти потери объединяются под общим названием ионизационных. В этом параграфе мы будем рассматривать только ионизационные потери. Рассмотрение других видов потерь мы отложим до 5.  [c.433]

При наличии в полупроводнике примеси его оптическое поглощение может быть связано с ионизацией примеси или возбуждением электрона нейтральной примеси в кристалле. Это поглощение называют примесным. При ионизации примеси энергия поглощенного кванта света расходуется на переход с донорных уровней в зону проводимости и из валентной зоны на акцепторные уровни.  [c.70]

Ионизационные эффекты возникают вследствие прохождения заряженных частиц или -квантов сквозь твердое тело и состоят в ионизации и в электронном возбуждении, сопровождаемых разрывами связей и другими проявлениями.  [c.292]

Развитие теоретических исследований неравновесных газовых течений способствовало также появление быстродействующих вычислительных машин. Необходимость учета релаксационных явлений при расчете газовых течений обусловлена следующими причинами. В области высоких температур и давлений протекают различные химические реакции, процессы диссоциации, ионизации, возбуждения колебательных и электронных степеней свободы. Если времена этих процессов сравнимы с характерными временами макроскопических процессов, то происходит значительное отклонение от состояния термохимического равновесия, вызывающее в свою очередь существенное изменение картины течения. Нарушение локального термохимического равновесия при расширении диссоциированной смеси в ракетном сопле может привести к значительным потерям тяги. Недостаточно высокая скорость электронно-ионной рекомбинации в  [c.118]


Атомные частицы, проходя через вещество, теряют энергию двумя способами. Во-первых, они могут возбуждать или вырывать атомные электроны во-вторых, они могут передавать энергию атому в целом при ядерных столкновениях. В связи с этим прохождение атомных частиц через вещество представляет сложную задачу многих тел. Однако ввиду большой массы ядра по сравнению с массой электрона можно с приемлемой степенью точности провести различие между ядерными столкновениями , при которых импульс и кинетическая энергия частицы переходят в поступательное движение атома как целого, и электронными столкновениями , при которых энергия передается атомным электронам и происходит возбуждение или ионизация атома. Ядерные столкновения относят к разряду упругих в отличие от неупругих столкновений при обмене энергией налетающей частицы с электронной подсистемой вещества.  [c.198]

При столкновении электрона, движущегося с большей скоростью, с атомом электрон передает значительную энергию атому, что приводит к возбуждению атома или даже его ионизации. Электрон может взаимодействовать с уже возбужденным атомом, при этом может произойти дополнительное возбуждение с переходом атома на еще более высокий энергетический уровень. Этот процесс называют ступенчатым электронным возбуждением. Допустим, что параллельный пучок электронов, имеющих одинаковые скорости, проходит через газ и взаимодействует с атомами, переводя их в возбужденное состояние. Если число атомов в единице объема N, а пучок электронов при входе в газ имел интенсивность /о, то после того, как пучок пройдет путь х, его интенсивность благодаря передаче энергии атомам уменьшится до значения  [c.34]

Процесс генерации неравновесных носителей быстрыми электронами носит многоступенчатый характер. Первичные электроны, взаимодействуя с твёрдым телом, теряют свою энергию в осн. на ионизацию атомов. Электроны, образующиеся в результате ионизации и оже-эффекта, могут обладать энергией, достаточной для осуществления последующих актов ионизации и создания электроннодырочных пар. Кроме того, в процессе торможения первичных и относительно быстрых внутренних вторичных электронов возможно возбуждение плазмонов, распад к-рых также сопровождается генерацией электронно-ды-  [c.555]

В качестве иллюстрации на рис. 4.2 приведены относительные затраты энергии электронов на упругие столкновения (У), возбуждение верхнего лазерного уровня (В) и электронных состояний (Э), а также ионизацию (И) типичной для СОг-лазера смеси. Как видно из рисунка, доля выделяемой в разряде электрической энергии, затрачиваемая на возбуждение верхнего лазерного уровня и характеризуемая колебательным КПД разряда Пк, для смесей СО2—Nz — Не может превышать 80%. Вторым важным для работы С,02-лазера обстоятельством является близкое, почти совпадающее положение уровней 00° 1 СО2 и и = 1 молекулы N2. В результате этого имеет место эффективный обмен возбуждением между этими уровнями и молекулы азота в состоянии с и = 1 могут принимать активное участие в накачке верхнего лазерного уровня. Помимо этого, колебательные уровни азота более эффективно заселяются электронным ударом и имеют очень большое время столкновительной релаксации. Наиболее эффективно азот расселяется при столкновении с молекулами Н2О и со стенками. Поэтому при малом содержании воды в смеси и больших размерах газоразрядной камеры азот может играть роль накопителя колебательного возбуждения с большим временем жизни. При наличии азота в смеси время релаксации запасенной верхним лазерным уровнем энергии т, увеличивается и становится равным  [c.119]

Известно, что энтальпия торможения продуктов сгорания высока и распределена по различным степеням свободы молекул в виде поступательного, вращательного и колебательного движений, а также энергии диссоциации молекул (энергию электронного возбуждения и ионизации можно не рассматривать, так как температуры в камере сгорания не настолько высоки).  [c.20]

Для поддержания разряда необходима ионизация газа для получения инверсии необходимо возбуждение активных центров. В газоразрядном лазере обе эти функции выполняются одновременно одними и теми же электронами при этом характерное для самостоятельного разряда распредег ление электронов по энергиям не является одновременно оптимальными для ионизации, и для возбуждения.Вэлек-троионизационном лазере указанные функции выполняются раздельно — ионизация газа обеспечивается ионизирую-  [c.59]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Выравнивание средней кинетической энергии электронов и атомов идет довольно сложным путем. При упругом столкновении электронов с атомами обмен кинетической энергией происходит в весьма слабой степени вследствие огромного различия в массах электронов и атомов. При неупругом столкновении кинетическая энергия передается атомам крупными порциями (возбуждение, ионизация), но воспринимается ими не как кинетическая энергия, а как внутренняя энергия атома, перешедшего в иное состояние. Однако возбужденный атом может не только испустить приобретенную им энергию в виде излучения возможны и столкновения возбужденного атома с невозбужденным, при которых энергия возбуждения распределяется между обоими атомами в виде кинетической энергии. Такие столкновения, получившие название столкновений вто рого рода, наблюдаются на опыте. Они-то и играют важную роль в явлениях электрического разряда при переходе кинетической энергии электронов в кинетическую энергию атомов.  [c.743]


Тяжелые (тяжелее электрона) заряженные частицы, проходя через вещество, теряют энергию главным образом на ионизацию и возбуждение атомов вещества. Характеристикой потери энергии является удельная потеря энергии dE/dx, МэВ/см, или (1р) dEjdx, МэВ/(мг-см -), где р — плотность вещества, мг/см . Удельные потери энергии называют также тормозной способностью вещества.  [c.1141]

На рис. 9.13 приведена схема типичного сцинтилляционного счетчика, в котором сцинтиллятором служит кристалл иодистого натрия Nal. Регистрируемая ионизирующая частица попадает в кристалл и тормозится в нем. Как и во всяком веществе, энергия частицы при торможении расходуется на ионизацию и возбуждение электронов в кристалле. В сцинтиллирующем кристалле энергия возбуждения частично выделяется в виде вспышки видимого света. Механизм образования вспышки сложен. Нетривиален также вопрос о том, почему сцинтиллятор может быть прозрачен по отношению к своему собственному излучению (казалось бы, спектр  [c.500]

В ряде случаев ускоренный полем электрон при столкновении с частицами газа передает им свою энергию, однако ионизации не происходит. Энергия затрачивается на перевод в возбужденное состояние электронов в атомах или молекулах. В последующем электроны возвращаются в невозбужденное состояние, а запасенная избыточная энергия излучается в виде кванта света, фотона. Фото-ны образуются и в результате рекомбинации электронов и ионов. Фотоны распространяются со скоростью света (3- 10 м/с), и их энергия в некоторых случаях достаточна, чтобы произвести фотоионизацию других атомов или молекул, расположенных далеко впереди фронта первичной лапины. В результате появляются цторичные. образовавшиеся за счет фотоионизации электроны, которые в свою очередь начинают процесс ударной ионизации и порождают новые электронные лавины, расположенные далеко впереди фронта первичной лавины.  [c.172]

Ионизация и возбуждение электронов, производжмые при прохождении быстрых частиц или -излучения через кристаллическую решетку, не влияют на обычные технические свойства керамик в заметной степени. Однако электроны, выбитые из атомов кристаллической решетки, могут захватываться в дефектах с образованием центров окрашивания или областей с переменными оптическими абсорбционными характеристиками. Этот эффект может иметь большое значение в тех областях техники, где применяются оптические стекла.  [c.143]

Облучение большинства неорганических керамических материалов сопровождается сильным эффектом фотопроводимости. Большая часть энергии излучения затрачивается на возбуждение электронов и ионизацию. Хотя это возбуждение и не приводит к разрыву старых и образованию новых связей, оно образует квазисвободные электроны, которые могут свободно перемещаться под влиянием электрического поля. Так как подвижность носителей заряда в неорганических соединениях выше, чем в органических полимерах, то и величина фототока, возникшего под действием облучения, соответственно иная.  [c.397]

Бомбардируя мишень, ионы выбивают из нее атомы, часть из которых попадает на подложку П и, конденсируясь, образует пленку. Таким образом, давление газа в камере влияет на распыление мишени сложным образом. С увеличением давления увеличивается число столкновений электронов с атомами газа на пути от катода до анода. Поэтому должно возрастать и количество образующихся положительных ионов при том же токе катода. Однако вовсе не каждое соударение электрона с атомом приводит к ионизации, даже если энергия электрона достаточью велика. Если же электрон еще не набрал энергии выше энергии ионизации ил й возбуждения атома, то при соударении происходит лишь обмен кинетической энергией между электронами и атомами газа. Хотя массы сталкивающихся частиц в этом случае очень сильно отличаются друг от друга и потери энергии электроном при каждом соударении невелики, тем не менее с ростом давления газа в камере средняя энергия электронов в том же самом электрическом поле уменьшается. Это значит, что уменьшается и относительное число соударений электронов, приводящих к ионизации атомов. Расчет показывает, что среднее количество ионов, создаваемых в газе каждым выходящим из катода электроном, с ростом давления сначала повышается, а затем падает. Эффект этот был открыт А. Г. Столетовым в конце XIX века, исследовавшим влияние газового наполнения на ток в приборе с фотоэлектронным катодом, и получил название эффекта газового усиления. Наибольшее газовое усиление происходит при некоторой величине отношения напряженности электрического поля к давлению, характерной для каждого газа. Для аргона, например, она равна 175 В/м-Па. Это означает, что при напряженьюстях поля 500— 1000 В/м оптимальное давление Аг составляет 3—6 Па (0,02—  [c.65]

При исследовании процессов, протекающих в условиях высоких температур, различают температуру отдельных частиц ("электронную, атомную, ионную) и температуру различных степеней свободы (трансляционную и ротационную), а также температуры ионизации и возбуждения. Под каждой из этих температур понимается температура, которой обладал бы одноатомный газ, со средггей кинетической энергией его молекул, равной средней кинетической энергии соответствующих частиц, а также степеней свободы или средней энергии соответ ствующих состояний ионизации или возбуждения,  [c.6]

Действие Д. основано на разл. процессах взаимодействия частиц с веществом. Оси. процессами, к-рые вызываются заряж. частица.ми, являются ионизация и возбуждение атомов и молекул, а также (для релятивистских частиц) возбуждение черенковского и переходного излучений. Нейтральные частицы (напр., нейтроны, 7-кваиты) регистрируются по вторичным заряж-частицам, появляющимся в результате их взаимодействия с веществом. В случае -у-кваитов это электроны, возникающие в результате фотоэффекта, комптон-эф-фекта и рождения электрои-позитроииых пар (см. Гамма-излучение). Быстрые нейтроны регистрируются по заряж. продуктам взаимодействия (ядрам, протонам, мезонам и др.), медленные нейтроны — по излучению, сопровождающему их захват ядрами вещества (см. Нейтронные детектора).  [c.588]

Уровень испускания может принадлежать как тому же атому (молекуле), к-рый поглотил энергию возбуждения (такие переходы называются внутрицепт-р о в ы м и), так и др. частице. Передача энергии др. атомам и молекулам осуществляется электронами при электронно-ионных ударах, при процессах ионизации и рекомбинации, индуктивно-резонансным или обменным путём, при неносредственпом столкновении возбуждённого атома с невозбуждённым. Из-за малой концентрации атомов в разреженных газах процессы резонансной и обменной передачи энергии в них играют малую роль. Они становятся существенными в конденсированных средах, где энергия возбуждения может передаваться также с помощью колебаний ядер. И, наконец, в кристаллах определяющей становится передача энергии с помощью электронов проводимости, дырок и электронно дырочных пар (экситонов). Если заключит, актом передачи энергии является рекомбинация (наир., электронов и ионов или электронов и дырок), то сопровождающая этот процесс Л. наз. рекомбинационной.  [c.625]

Др. тип структур в газоразрядной плазме — страты — чередующиеся светя1циеся и тёмные области разряда эта правильная полосатая структура может перемещаться и бежать к электроду, а может быть неподвижной. Страты существуют в определ. области токов и давлений механизмы их возбуждения и характер проявления различны для атомных и молекулярных газов. Страты возникают при таких параметрах разряда, при к-рых существенна ступенчатая ионизация газа, так что скорость ионизации зависит от плотности электронов нелинейно. Возникновение страт обусловлено тем, что с увеличением плотности электронов повышаются скорость ионизации и ср. энергия (темп-ра) электронов, а это в свою очередь вызывает возрастание плотности электронов. Страты как осциллирующая структура распределения электронов в разряде выгоднее однородного распределения, ибо при таком распределении более эффективно используется вводимая в газ энергия. Амплитуда осцилляций плотности электронов и размер страт определяются механизмом возникновения неустойчивости и конкретными параметрами плазмы.  [c.354]


Механизмы преобразования энергии частицы в световую вспышку различны для разных сцинтилляторов. В большинстве случаев они могут быть сведены к след, (упрощённой) схеме 1) ионизация и возбуждение атомов и молекул, образование радикалов 2) перенос энергии возбуждения к центрам свечения (радиационный, резонансный, экситон-ный, электронно-дырочный) 3) возбуждение и высвечивание центров свечения. Нейтральные частицы регистрируются благодаря передаче энергии заряженным у-кванты — по электронам и позитронам (см. Гамма-излучение), нейтроны— по протонам отдачи (при упругом рассеянии) или по заряж, частицам, возникаю1Цим в мдерных реакциях нейтронов с веществом сцинтиллятора.  [c.38]

Для описания ионизации и, в частности, связанных с нею энергетич. затрат, к-рые в пересчёте на частицу всегда больше потенциала ионизации (причём иногда в десятки раз), необходимо рассмотреть все цепочки процессов трансформации частиц (возбуждение колебательных и электронных уровней, диссоциацию и т. д.), а также самосогласованно описывать излучение плазмы, сопровождающее эти процессы. Необходимость в методах самосо-  [c.112]

Т. р. постоянного тока в трубке. Поскольку толщина КС порядка длины ионизации, часть электронов, ускоряясь на катодном скачке потенциала, набирает энергию, равную этому потенциалу, В результате интенсивной ионизации газа этим пучком электронов в области ТС образуется светящийся слой плазмы большой плотности. Величина электрич. поля здесь близка к нулю. По мере продвижения от области ТС по направлению к аноду плотность плазмы падает из-за рекомбинации и амбиполярной диффузии, электрич. поле растёт, но enie недостаточно для ионизации и возбуждения атомов (область ФТП). Далее, в области ПС электрич. поле достигает величины, при к-рой ионизация электронами, набирающими энергию в этом поле, становится существенной. Для электрич. поля в ПС справедлив закон подобия Ejp f(pR), вытекающий из равенства скоростей ионизации и потерь за счёт амбиполярной диффузии к стенкам (теория Шоттки). ВАХ ПС не зависит от тока, плотность плазмы пропорциональна плотности тока. Для молекулярных газов с ростом тока необходимо учитывать гфоцессы объёмной рекомбинации, приводящие к слабому росту напряжения на ПС, при дальнейшем увеличении тока происходит нагрев газа (для молекулярных газов). Б атомарных газах при увеличении тока в первую очередь газ разогревается, плотность его уменьшается  [c.117]

С помощью Э. в. осуществляется взаимодействие положительно заряженных ядер и отрицательно заряженных электронов в атомах и молекулах. Тем самым Э. в. определяет (на основе законов квантовой механики) возможность устойчивого состояния таких микроскопич. систем. Размеры и существ, образом определяются величиной электрич. заряда электрона (так, Бора радиус равен где —масса электрона). Эл.-магн. природу имеют фотоэффект, явления ионизации и возбуждения атомов среды быстро движущимися заряж. частицами, процессы расщепления ядер фотонами, реакции фоторождеиия мезонов, радиационные (с испусканием фотонов) распады элементарных частиц и возбуждённых состояний ядер, упругое и неупругое рассеяние электронов и мюонов на ядерных мишенях и т. п.  [c.540]

Анализ энергетич. спектров неупруго рассеянных электронов составляет основу спектроскопии характеристических потерь энергии электронов, исследующей коллективные (плазменные) и одночастичные возбуждения валентных электронов с энергией до < 50эВ, и ионизационной спектроскопии, изучающей возбуждение и ионизацию электронов внутр. оболочек атомов (электронов острова) в диапазоне потерь энергии —5000 эВ. В зависимости от используемой энергии первичных электронов в Э. с. (и в дифракции электронов) различают два случая. Если энергия лежит в интервале от десятков до 100 кэВ, то регистрируются либо электроны, прошедшие сквозь тонкий слой вещества, когда получаемая информация характеризует его объёмные свойства, либо электроны, отражённые от поверхности под скользящими углами. Обычно при этом аппаратуру совмещают в одном приборе с электронным микроскопом [5 ]. В области низких и ср. значений энергии (не превосходящих неск. кэВ) используется геометрия эксперимента на отражение. В этом случае получают информацию о структуре и свойствах приповерхностного слоя, толщина к-рого примерно равна длине свободного (по отношению к неупругому взаимодействию) пробега электрона X. При энергии электронов 50—100 эВ, когда X, составляет неск. моноатомных слоев, достигается наиб, чувствительность метода к свойствам поверхности. При большей и меньшей энергии глубина зондирования возрастает.  [c.553]


Смотреть страницы где упоминается термин Ионизация и электронное возбуждение : [c.159]    [c.539]    [c.103]    [c.86]    [c.187]    [c.199]    [c.463]    [c.55]    [c.167]    [c.421]    [c.591]   
Смотреть главы в:

Физика ударных волн и высокотемпературных гидродинамических явлений  -> Ионизация и электронное возбуждение



ПОИСК



Возбуждение и ионизация

Возбуждение электронное

Возбуждения

Возбуждения электронов

Ионизация



© 2025 Mash-xxl.info Реклама на сайте