Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Режим течения ламинарный турбулентный

Критическим значением числа Рейнольдса для круглых труб будет значение Rei p = 2320, при меньших значениях режим течения ламинарный, при больших — турбулентный.  [c.105]

Зависимости Ке кв и Ке"кр выделяют три области (см. рис. 19.11). При Ке<Ке кр (область I) режим течения ламинарный вторичная циркуляция отсутствует коэффициент теплоотдачи определяется по формулам для ламинарного режима при течении в прямой трубе. Если Ке>Ке кр (область II), режим течения ламинарный при наличии вторичной циркуляции, то в этом случае коэффициент теплоотдачи рекомендуется определять по формуле (19.37), как для турбулентного режима. При Ке>Ке"кр (область III) режим течения турбулентный с вторичной циркуляцией коэффициент теплоотдачи рекомендуется определять по формуле (19.37) с поправкой визг  [c.304]


При Ре<2300 режим течения ламинарный, при Ре>2300 режим — турбулентный.  [c.57]

Обобщенной характеристикой, определяющей режим течения любой жидкости в трубах (каналах), является критерий Рейнольдса Ре — wd.lv. При Ре 2300 режим течения ламинарный, при Ре > 10 устанавливается устойчивый турбулентный режим. Режим течения в области 2.300 < Ре < 10 называется переходным. В этом случае в потоке жидкости могут сосуществовать как ламинарная, так и турбулентная области.  [c.208]

Рис. 3-12, Гидродинамическая стабилизация течения жидкости в трубе. а — ламинарный режим течения б — турбулентный режим течения. Рис. 3-12, <a href="/info/26593">Гидродинамическая стабилизация</a> <a href="/info/204319">течения жидкости</a> в трубе. а — <a href="/info/792">ламинарный режим течения</a> б — <a href="/info/26213">турбулентный режим</a> течения.
Если Re < 2320, то режим течения ламинарный. Если Re > 2320, режим турбулентный.  [c.67]

Режим течения жидкости турбулентный, а газа ламинарный турбулентно-ламинарный поток).  [c.135]

В технической литературе критические режимы рассмотрены только для ротационных вискозиметров типа цилиндр—цилиндр. Из многочисленных опытов известно, что ламинарный режим движения вязкой жидкости в зазоре между коаксиальными цилиндрами осуществим лишь до определенных чисел Рейнольдса. При этом существует два критических числа Рейнольдса нижнее Re и верхнее Re. При Re > Re режим течения будет чисто турбулентным, при Re режим течения ламинарный. Неравенство Re < Re < Re определяет собой область неустойчивости ламинарных течений. Для выяснения вопроса об устойчивости разработаны эффективные теоретические методы, из которых наи-О более общим является метод Ляпунова.  [c.17]

В ядерных реакторах с шаровыми твэлами практически отсутствует ламинарный режим течения теплоносителя, поскольку наличие касания шаровых твэлов между собой и стенками канала или отражателя и резкое изменение сечения для прохода теплоносителя способствуют раннему образованию турбулентного, а затем и отрывного вихревого течения. Раньше  [c.46]

Для каждой установки существует некоторый диапазон критических значений чисел Ке р, при которых происходит переход от одного режима течения к другому. Значение критического числа Ре, ниже которого режим течения обязательно ламинарный, для трубы круглого сечения составляет примерно 2300. Число Ре р, при котором ламинарный режим течения переходит в турбулентный, существенно зависит от условий входа потока в трубу, состояния поверхности стенок и др. При очень плавном входе и гладких стенках переход от ламинарного режима к турбулентному наступает при числах Ре, р > 2300. На практике чаще встречается турбулентный режим течения.  [c.19]


В обш ем случае при R > R p возникает турбулентный режим течения в пограничном слое, причем так же, как и при ламинарном режиме, течение в трубе можно подразделить на входной  [c.350]

Скорость пара при движении его по трубе уменьшается при полной конденсации пара его скорость на выходе равна нулю. Режим течения пара может быть ламинарным или турбулентным, причем турбулентное течение из-за уменьшения скорости на некотором рас-  [c.415]

Ламинарный режим течения реализуется при сравнительно малых числах Рейнольдса, меньших некоторого критического значения, называемого критическим числом Рейнольдса Re p. При Re > Re , течение имеет турбулентный характер. Для гладкой пластины Re p составляет более 5 10 , для трубы — около 3000.  [c.369]

Вблизи передней кромки пластины (см. рнс. 8.19) пограничный слой ламинарный, так как даже при турбулентном внешнем потоке скорость и толщина пограничного слоя малы, а значит, мало число Рейнольдса Rea = ыб/v. Поскольку б j/j , режим течения можно характеризовать более условным числом Re = ox/v. Как показывают результаты опытов, переход к турбулентному режиму на пластине наблюдается при  [c.361]

Такое распределение характерно для ламинарного безнапорного течения (течение Куэтта). Этим дополнительно обосновывается существование у стенки вязкого подслоя с ламинарным режимом течения. В действительности современные эксперименты обнаруживают наличие турбулентных пульсаций во всей толще потока вплоть до стенки. Однако при малых, исчисляемых долями миллиметра расстояниях от нее эти пульсации слабы и не оказывают заметного влияния на режим течения.  [c.170]

Существуют два режима течения жидкости (газа) ламинарный и турбулентный. Ламинарное течение является упорядоченным слоистым течением все частицы во время движения остаются в своем слое и не перемешиваются с соседними. Как показывают опыты, ламинарный режим течения соответствует достаточно малым значениям числа Рейнольдса.  [c.40]

При значениях Ке, , > 1600 ламинарно-волновой режим течения пленки сменяется турбулентным. При этом так же, как и в обычных турбулентных потоках (например, в каналах), слой жидкости, непосредственно прилегающий к стенке, сохраняет черты ламинарного течения, а за пределами этого слоя пленки действует механизм турбулентного перемешивания. Это позволяет исключить из рассмотрения влияние волновых процессов, вязкости и поверхностного натяжения жидкости на касательные напряжения и связь между толщиной пленки и плотностью орошения. Анализ и результаты экспериментального изучения закономерностей течения тонких пленок показывают, что для свободно стекающей пленки можно записать равенство осредненных или локальных значений веса пленки и касательных напряжений на стенке в виде  [c.173]

Опыт показал, что режим течения в пограничном слое может быть ламинарным или турбулентным интегральные соотношения оказываются пригодными для обоих режимов течения, однако вид функций Wx = f y), способ их выбора, а также метод определения касательных напряжений (правая часть интегральных соотношений) будут различными для ламинарного и турбулентного режимов течения. Поэтому решение интегральных соотношений для этих двух режимов течения рассмотрим раздельно.  [c.114]

Турбулентное течение пленки. По мере стекания жидкой пленки по вертикальной стенке изменяется число Рейнольдса Re = o)5/v (12.19). При некотором критическом числе Re p ламинарный режим течения пленки переходит в турбулентный. Re p лежит в следующих пределах  [c.256]

Опыт показал, что режим течения в пограничном слое может быть ламинарным или турбулентным интегральные соотношения оказываются пригодными для обоих режимов течения, однако вид функций w = f(y), способ их выбора, а также метод определения касательных напряжений (правая часть интегральных соотношений) будут различными для ламинарного и турбулентного режимов течения.  [c.262]


В окрестности критической точки предполагается ламинарный режим течения, так как мало число Рейнольдса и действует отрицательный градиент давления, однако интенсивность теплообмена (значение числа Нуссельта Nu) (точки на рис. 32.11) в несколько раз превосходит соответствующее значение Nu, рассчитанное по ламинарной теории (см. гл. 29). Одной из причин столь высокой интенсивности теплообмена в указанных условиях (рис. 32. 11), по-видимому, является эффект проникновения в ламинарный пограничный слой турбулентных пульсаций из внешнего течения.  [c.302]

Следует отметить также, что выписанные выше системы уравнений справедливы только для ламинарных течений, т. е. при Ке <С Ке, где Ке — верхнее критическое число Рейнольдса, такое, что при Ре > Ре.,, реализуется турбулентный режим течения. Этот режим течения характеризуется неупорядоченностью траекторий частиц, в результате чего для установившихся турбулентных течений, вообще говоря, невозможно ввести понятие линии тока. Для турбулентных течений уже нельзя использовать обычные коэффициенты переноса молекулярных признаков, так как механизм переноса импульса и энергии здесь принципиально иной (см. 7.9).  [c.381]

Более тщательные экспериментальные исследования ао-казали, что существуют так называемые верхние и нижние числа Рейнольдса. Если при Ке < Ке реализуется ламинарный режим течения, то величину Ре называют нижним числом Рейнольдса. Если при Ре > Ре реализуется турбулентный режим течения, то величину Ре называют верхним числом Рейнольдса.  [c.438]

Режим течения в струях может быть как ламинарным, так и турбулентным, однако наибольшее практическое значение имеют турбулентные струи.  [c.327]

При Re < Re р (Re,.p — критическое значение числа Рейнольдса) существует ламинарный режим течения, при Re>Re p — турбулентный. Значения Re p для сечений различной формы находятся в интервале Re p = 2 000 —  [c.113]

При Re < Re p (Re ) — критическое значение числа Рейнольдса) существует ламинарный режим течения, при Re > Re p — турбулентный. Значения Re p для сечений различной формы находятся в интервале Re, p = 2000— —3000 (так называемая критическая зона).  [c.111]

Величина утечек зависит от режима движения уплотняемой среды и типа применяемой втулки. Возможны четыре случая уплотняемая среда может быть сжимаемой и несжимаемой, а режим течения ламинарным или турбулентным. Втулки делятся на две категории фиксированные и самсустанав-ливающиеся в зависимости от того, являются ли они неподвижными относительно корпуса машины, или нет.  [c.50]

Проблема устойчивости течения жидкости хорошо известна в классической гидромеханике. В обш ем виде эту проблему можно сформулировать следующим образом. Пусть дана хорошо постаь-ленпая краевая задача. Может существовать (и даже быть получено в явном виде) точное решение уравнений движения, удовлетворяющее всем граничным условиям, которое является стационарным в эйлеровом смысле d dt = 0). Все же такое решение может быть неустойчивым в том смысле, что если в некоторый момент времени наложить на это решение малые возмущения, то эти возмущения самопроизвольно будут стремиться возрастать с течением времени, а не затухать. Это означает, что существует другое (возможно, нестационарное) решение уравнений движения и что практически наблюдаемый режим течения будет нестационарным, поскольку, конечно, в реальном случае невозможно избежать каких-либо возмущений. Типичным примером этого является турбулентное течение в трубе постоянного сечения, где имеется также стационарный, но неустойчивый режим течения, называемый ламинарным.  [c.297]

При малых числах Re преобладают силы вязкости и режим течения жидкости ламинарной (отдельные струи потока не перемешиваются, двигаясь параллельно друг другу, и всякие случайные завихрения быстро затухают под действием сил вязкости). При турбулентном течении в потоке преобладают силы инерции, поэтому завихрения интенсивно развиваются. При продольном обтекании пластины (см. рис. 9,2) ламинарное течение в пограничном слое нарушается на расстоянии Хкр от лобовой точки, на котором Re p = ЮжХкр/v 5 10 .  [c.82]

Различают два режима течения жидкости — ламинарный и турбулентный. Ламинарный режим течения является устойчивым, струйки жидкости движутся отдельно, не смешиваясь одна с другой. Турбулентный режим характеризуется неустойчивостью течения, бe пopяJl,oчным перемещением конечных масс жидкости и их перемешиванием.  [c.19]

В первой главе при описании течений в газожидкостных системах было дано определение режима снарядного течения (см. рис. I, б). Напомним, что этот режим течения характеризуется периодическим прохождением вдоль оси трубы больших, сравнн.мых по размеру с диаметром трубы, пузырей газа. Будем предполагать, что пространство между газовыми пузырями, заполненное жидкостью, не содержит дисперсных газовых включений. Будем также считать, что возмущенно жидкости, вызванное прохождением данного пузыря газа, не влияет на скорость всплывания остальных пузырей, и их движение можно считать независимым. Таким образом, рассмотрим движение одного большого газового пузыря в условиях ламинарного и турбулентного профилей скорости жидкости [71]. Основным гидродинамическим  [c.209]

Здесь X — расстоянпе от передней кромки пластины.) Наиболее характерным признаком такого перехода на пластине является резкое увеличение толщины пограничного слоя и напряжения трения на стенке. Одной из особенностей пограничного слоя на пластинке является то, что вблизи передней кромки он всегда ламипарен и только на некотором расстоянпп х р начинается переход в турбулентный режим течения. Ввиду сложности движения в переходной области и небольшой ее протяженности обычно пренебрегают конечными размерами этой области, т. е. считают, что переход ламинарного пограничного слоя в турбулентный происходит при X = скачком.  [c.282]


Ламинарный режим течения имеет место только при числах Рейнольдса, меньших своего критического значения. Согласно опытам в трубах критическое число Рейнольдса приближенно равно R p = = 2300. Однако несУбходи-мо иметь в виду, что величина R p в значительной мере зависит от условий течения и в первую очередь от начальной турбулентности втекающего потока. В специальных экспериментах, где турбулентность внешнего потока была незначительной, удалось сохранить ламинарный режим течения до значительно больших, чем критическое, значений чисел Рейнольдса.  [c.350]

Рассмотрим теплоотдачу в трубе с ленточным завихрителем, схема которой показана на рис. 8.8. Закрутка потока приводит к появлению неоднородного поля массовых сил в поперечном сечении потока, которое имеет много общего с полем массовых сил в змеевике. Канал, образованный ленточным завихрителем и стенкой трубы, представляет собой змеевик с поперечным сечением в форме полукруга. Поэтому в закрученном потоке, как и в змеевике, возникает парный вихрь (рис. 8.8), а режим течения может быть ламинарным, ламинарным с макровихрями и турбулентным.  [c.352]

Кроме конфигурации граничных поверхностей необходимо учитывать влияние режимов движения жидкости па величину и механизм, потерь. Как известно из гл. 2 и 5, кинематические структуры ламинарного ji турбулентного потоков различны турбулентные пулбсащш "Гпорождают добавочные касательные напряжения, которые вызывают увеличение потерь энергии в турбулентных потоках по сравнению с ламинарными при сопоставимых условиях. Для оценки потерь важно знать условия перехода ламинарного течения в турбулентное. Этот вопрос рассмотрен в п. 6.6. Здесь укажем только на классический опыт О. Рейнольдса, который, наблюдая поведение подкрашенных струек жидкости в стеклянной трубке, установил сугцествование критического значения числа Re =-- vdh, определяющего границу между ламинарным и турбулентным режимами. Если для круглых труб число Рейнольдса определять по формуле Re = vdiv (где а — средняя скорость потока d—диаметр трубы), то, как показали опыты О. Рейнольдса и других исследователей, при Re < Re p = = 2300 наблюдается устойчивый ламинарный режим, при Re >  [c.140]

Описанный в этом параграфе характер течения и соответствующие ему зависимости имеют место только при устойчивом ламинарном режиме, т. е. при Re < Re p. При значениях Re > R kp возможно нарушение ламинарного характера течения и возникновение турбулентности. Механизм перехода от ламинарного течения к турбулентному достаточно сложен и, несмотря на многочисленные исследования, выяснен не полностью. Тем не менее можно дать хотя и схематичное, но достаточно близкое к реальной картине описание движения при околокритических числах Re, Так, при числах Re, немного меньших Квкр, в ламинарном потоке периодически появляются кратковременные очаги турбулентности, которые могут на отдельных участках заполнять все сечение потока, образуя турбулентные пробки . Этот переходный процесс можно характеризовать долей А/ некоторого интервала времени Т, в течение которой в данной точке потока существует турбулентный режим. Величину у = At/T называют коэффициентом перемежаемости. По мере возрастания числа Рейнольдса, а также при удалении от входа в трубу величина у непрерывно возрастает.  [c.167]

В некоторых технических задачах (например, при проектировании устройств струйной гидропневмоавтоматики) приходится встречаться с турбулентными затопленными струями, образующимися при истечениях жидкости из отверстий и сопл в среду тех же физических свойств, что и струя. Режим течения в таких струях может быть ламинарным, однако наибольшее практическое значение имеют турбулентные струи, основы теории которых рассмотрены в настоящем параграфе.  [c.415]

Сравнивая это число с соответствующим критическим значением Некр, определяем режим течения перед вдуваемой струей Яе , Яекр ( > — турбулентный, < — ламинарный).  [c.362]

Режим движения жидкости существенным образом зависит от соотношения действующих на частицы жидкости сил. Если при движении жидкости доминируют силы вязкости, то режим движения ламинарный (течение мазута, густого масла, патоки) Ке<Кекр. Если преобладают силы инерции, то режим движения турбулентный КеЖвкр.  [c.41]

На начальном участке (при малых значениях х) гидродинамический слой очень тонок (в лобовой точке х=0 6г=0) и течение в нем ламинарное, упорядоченное. По мере удаления от лобовой точки толщина пограничного олоя растет. Постепенно ламинарный режим течения переходит в турбулентный. При турбулентном пограничном слое около поверхности сохраняется тонкий ламинарный поделай 5л.п, где скорость невелика и силы вязкости гасят турбулентные вихри.  [c.41]


Смотреть страницы где упоминается термин Режим течения ламинарный турбулентный : [c.73]    [c.74]    [c.78]    [c.210]    [c.132]    [c.416]    [c.158]    [c.378]    [c.342]    [c.359]   
Сборник задач по гидравлике и газодинамике для нефтяных вузов (1990) -- [ c.74 , c.75 ]



ПОИСК



Ламинарное и турбулентное течение

Ламинарное те—иве

Ламинарный режим течения

Режим ламинарный

Режим турбулентный

Режимы течения

Течение ламинарное

Течение турбулентное

Турбулентный режим течения



© 2025 Mash-xxl.info Реклама на сайте