Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Питтингообразование

Б.6.3 КРИТИЧЕСКИЙ ПОТЕНЦИАЛ ПИТТИНГООБРАЗОВАНИЯ  [c.85]

Согласно оксидно-пленочной теории, критический потенциал — это. потенциал, необходимый для создания в пассивирующей пленке электростатического поля, способного стимулировать проникновение ионов С1 к поверхности металла [40]. Другие анионы также могут проникать в оксид, в зависимости от их размера и заряда. Примеси этих анионов улучшают ионную проводимость и благоприятствуют росту оксида. В конечном счете оксид или разрушается из-за конденсации мигрирующих вакансий, или его катионы растворяются в электролите на границе раздела сред в обоих случаях начинается питтинг. Предшествующий питтингообразованию индукционный период зависит от времени, которое требуется С1 для проникновения через оксидную пленку.  [c.87]


При потенциале ниже критического ионы С1 не могут заместить адсорбированный кислород до тех пор, пока пассивная пленка остается неповрежденной, поэтому питтинг не развивается. Если бы пассивность была нарушена другим путем, например снижением концентрации кислорода или деполяризатора в щелях (щелевая коррозия) или локальной катодной поляризацией,- пит-тинг мог бы тогда возникнуть независимо от того, выше или ниже критического значения находится потенциал основной поверхности. Но в условиях однородной пассивности на всей поверхности металла, чтобы организовать катодную защиту для предотвращения питтингообразования, требуется лишь сдвинуть потенциал металла ниже критического значения. Это противоречит обычному правилу применения катодной защиты, согласно которому необходима более глубокая поляризация металла — до значения анодного потенциала при разомкнутой цепи.  [c.88]

Критический потенциал коррозионного растрескивания — это такой потенциал, выше которого происходит адсорбция разрушающих ионов, а ниже — их десорбция. В принципе, он может быть как отрицательнее, так и положительнее коррозионного потенциала. Ингибирующие анионы, сами не вызывающие растрескивания, конкурируют с разрушающими ионами за адсорбционные места требуется приложить более высокий потенциал для достижения поверхностной концентрации разрушающих ионов, достаточной для адсорбции и растрескивания. Когда под воздействием ингибирующих ионов критический потенциал становится выше потенциала коррозии, растрескивание прекращается, потому что разрушающие ионы больше не могут адсорбироваться. Механизм конкурентной адсорбции сходен с ранее описанным механизмом питтингообразования, критический потенциал которого также сдвигается в положительном направлении в присутствии посторонних анионов (разд. 5.5.2).  [c.141]

Лабораторные исследования [84] показали, что для возникновения фреттинг-коррозии при трении стали о сталь требуется кислород, а не влага. Разрушение во влажном воздухе меньше, чем в сухом ещ,е меньшие разрушения наблюдаются в атмосфере азота. С понижением температуры коррозия усиливалась. Таким образом, становится очевидным, что механизм фреттинг-коррозии не электрохимический. Разрушение увеличивается с возрастанием нагрузки вследствие интенсивного питтингообразования на контактирующих поверхностях, так как продукты коррозии, например а-РеаОз, занимают больший объем (в случае железа — в 2,2 раза), чем металл, из которого образуется данный оксид. Так как при колебательном скольжении оксиды не могут удаляться с поверхности, их накопление ведет к локальному увеличению напряжения, а это ускоряет разрушение металла в тех местах, где скапливаются оксиды. С увеличением скольжения фреттинг-коррозия также возрастает, особенно при отсутствии смазки на. трущихся поверхностях. Увеличение частоты при одном и том же числе циклов снижает разрушение, но в атмосфере азота этого эффекта не наблюдается. На рис. 7.19 представлены графики зависимости фреттинг-коррозии от разных факторов. Заметим, что скорость коррозии в начальный период испытаний больше, чем при установившемся режиме.  [c.165]


Коррозия в щелях подчиняется тем же закономерностям, что и питтинговая коррозия. Чем выше электрическая проводимость электролита и больше площадь катодной поверхности вне щели, тем выше скорость растворения в щели, которая является анодом. Инициация щелевой коррозии, однако, не связана с достижением критического потенциала питтингообразования. Она зависит только от факторов, влияющих на нарушение пассивности внутри щели. Депассивация может произойти, например, из-за уменьшения концентрации в щели растворенного кислорода вследствие протекания незначительной общей коррозии сплава. Тогда образуется элемент дифференциальной аэрации, и в щели накапливаются кислые продукты коррозии (в результате анодной реакции). Такие изменения в составе электролита существенно способствуют  [c.314]

Катодная защита поляризацией до потенциала ниже критического потенциала питтингообразования. Для этого можно применять приложенный извне ток, а также в хорошо проводящих средах (например, морской воде) — защиту цинковыми, железными или алюминиевыми протекторами [44]. Аустенитные нержавеющие стали, применяемые для сварки малоуглеродистой листовой стали, а также гребные винты из стали 18-8, установленные на судах из черной стали, не подвергаются питтингу.  [c.315]

Значения потенциала питтингообразования, составляющие  [c.379]

Рис. 63. Зависимость защитного действия против питтингообразования от концентрации ингибитора в коррозионной жидкости С — минимальная эффективная концентрация ингибитора для предотвращения питтингообразования С < С — питтинг есть С > С — питтинга нет Рис. 63. Зависимость <a href="/info/126197">защитного действия</a> против питтингообразования от концентрации ингибитора в коррозионной жидкости С — минимальная <a href="/info/108000">эффективная концентрация</a> ингибитора для предотвращения питтингообразования С < С — <a href="/info/6691">питтинг</a> есть С > С — питтинга нет
Критическая температура питтингообразования для этой стали равна  [c.20]

При эксплуатации в морской воде нержавеющие стали обычно имеют потенциал +200 мВ по НКЭ. При увеличении потенциала понижается критическая температура питтингообразования при определенной концентрации хлоридов и постоянном потенциале и, следовательно, повышается опасность питтинговой коррозии.  [c.22]

Однако при ионном легировании железа хромом смещение потен-1 иала питтингообразования в положительном направлении меньше, чем при соответствующем объемном легировании, т.е. меньше стойкость к питтинговой коррозии.  [c.74]

Нержавеющие стали по своей стойкости к общей коррозии занимают одно из первых мест среди конструкционных материалов. Вместе с тем они склонны к различным видам местной коррозии, таким, как питтинговая, межкристаллит-ная, щелевая коррозия и коррозионное растрескивание. Химический состав стали оказывает существенное влияние на ее склонность к локальной коррозии. Молибден — элемент, наиболее эффективно понижающий склонность нержавеющих сталей к питтингообразОванию и межкристаллитной коррозии.  [c.32]

По отношению к стали щелочные растворы менее агрессивны, чем нейтральные и кислые. Однако для сильнощелочных растворов при значениях pH выше необходимого для полной пассивации может проявляться питтингообразование, хотя общая коррозия снижается.  [c.107]

Точечная коррозия на металлах, как правило, возникает в растворах, содержащих галоидные анионы, из которых наиболее агрессивны С1 и Вг", в то время как точечную коррозию вообш,е не вызывает, обеспечивая значительное и равномерное растравливание поверхности металла. Точечная коррозия происходит, если.концентрация галоидного иона равна критической концентрации, зависящей от природы металла и некоторых других факторов, или превышает ее. Увеличение концентрации галоидных ионов облегчает питтингообразование.  [c.419]


Ионы галогенов в меньшей степени влияют на аНодное поведение титана, тантала, молибдена, вольфрама и циркония, и их пассивное состояние может сохраняться в среде с высокой концентрацией хлоридов, в отличие от железа, хрома и Fe—Сг-спла-вов, теряющих пассивность. Иногда это объясняют образованием на перечисленных металлах (Ti, Та, Мо и др.) нерастворимых защитных основных хлоридных пленок. Однако в действительности подобная ситуация возникает благодаря относительно высокому сродству этих металлов к кислороду, что затрудняет замещение ионами С1 кислорода из пассивных пленок, вследствие более высоких критических потенциалов металлов, выше которых начинается питтингообразование.  [c.85]

Связь между минимальной активностью аниона, необходимой для ингибирования питтингообразования нержавеющей стали 18-8, алюминия и, возможно, многих других пассивных металлов в растворе с заданной активностью С1 имеет вид Ig a i- = k Ig + onst.  [c.88]

Было обнаружено, что в нейтральных растворах хлоридов включения серы в прокатанную сталь действуют как инициаторы питтингообразования [36,37]. С другой стороны, отмечено, что, примесь серы в стали, содержащей более 0,01 % Си, не оказывает существенного влияния на скорость коррозии в кислотах [33, 38]. Измерения скорости проникновения водорода сквозь катодно-поляризованную. листовую сталь, содержащую игольчатые включения (FeMn)S, показывают, что H S, образующийся на поверхности металла в результате растворения включений, стимулирует (промотирует) проникновение водорода в сталь. Скорость проникновения увеличивается с повышением содержания серы в пределах 0,002—0,24 % S, но только на тех участках, где поступление HjS идет в результате растворения включений [39]. Включения игольчатых сульфидов способствуют водородному охрупчиванию, которое может приводить к быстрому или постепенно развивающемуся растрескиванию, например, стальных трубопроводов [40].  [c.125]

Влияние аэрации на подземную коррозию обобщено Романовым [7] В хорошо аэрируемых грунтах скорость питтингообра-зования быстро падает от высоких начальных значений, вследствие окисления железа и образования на поверхности металла гидроксида железа, обладающего защитными свойствами и снижающего скорость питтингообразования. С другой стороны, в плохо аэрируемых грунтах начальная скорость питтингообразования снижается очень медленно. В этом случае неокисленные продукты коррозии диффундируют вглубь почвы и практически НС защищают металл от дальнейшего разрушения. Агрессивность почвы влияет также на наклон кривой зависимости глубины пит-тинга от времени. Так, даже в грунтах с хорошей аэрацией избыточная концентрация растворимых солей будет препятствовать об-  [c.182]

На протекторы из магниевых сплавов для катодной защиты в США каждый год потребляют примерно 5,5 млн. кг магния [101. Магниевые аноды часто легируют 6 % А1 и 3 % Zn для уменьшения питтингообразования и увеличения выхода по току. Достоинством магнйя высокой чистоты, содержащего 1 % Мп, является более высокий потенциал (с более высоким выходным анодным током) [11 ]. В морской воде значения выхода по току обоих сплавов близки, однако в обычных грунтах этот показатель для сплава с 1 % Мп несколько ниже. Практически токоотдача магниевых анодов в среднем составляет около 1100 А-ч/кг по сравнению с теоретическим значением 2200 А-ч/кг. Схема стального бака для горячей воды с магниевым анодом, представлена на рис. 12.3. Применение таких стержней может продлить жизнь стальных емкостей на несколько лет, при условии их замены в требуемые сроки. Степень защиты выше в воде с высокой элек-  [c.219]

Для пассивных металлов критерий защиты иной. Поскольку такие пассивные металлы, как алюминий или нержавеющая сталь, при низких скоростях коррозии растворяются равномерно, а при высоких — с образованием питтингов, их катодная защита обеспечивается уже при поляризации до значений более отрицательных, чем критический потенциал питтингообразования (см. разд. 5.5.2). Последний лежит в пассивной области, и его значение тем ниже, чем выше концентрация С1"-ионов в 3 % растворе Na l его значение для алюминия составляет —0,45 В.  [c.227]

Ввиду того, что пассивность. железа и нержавеющих сталей нарушается галогенид-ионами, невозможна анодная защита этих металлов в соляной кислоте и кислых растворах хлоридов, где плотность тока в пассивной области очень велика. Кроме того, если электролит загрязнен ионами С1 , существует опасность образования питтингов даже при достаточно низкой плотности пассивного тока. В последнем случае, однако, достаточно поддерживать потенциал ниже критического потенциала питтинго-образования для данного смешанного электролита . Титан, который имеет высокий положительный критический потенциал питтингообразования в широком интервале концентраций С1 -иона и температур, пассивен в присутствии С1 -ионов (низкая /пасс) и может быть анодно защищен даже в растворах соляной кислоты.  [c.229]

Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % Ni (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержаш,ие кроме того от нескольких десятых до 1,75 % Fe, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % Ni (мо-нель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо.  [c.361]


Рис. 24.2. Влияние температуры на потенциал питтингообразования технического титана и Мо—Ti-сплава с 1 % Мо в 1/п растворе Na l [19] Рис. 24.2. <a href="/info/222925">Влияние температуры</a> на <a href="/info/6757">потенциал питтингообразования</a> технического титана и Мо—Ti-<a href="/info/1742">сплава</a> с 1 % Мо в 1/п растворе Na l [19]
Образование питтинга на титане более ярко выражено в растворах, содержащих ионы Вг" и I", чем в растворах с С1". Потенциалы питтингообразования в растворах, содержаш,их 1 моль/кг Вг" и 1 моль/кг I", при комнатной температуре равны соответственно 0,9 и 1,8 В [20]. Мансфельд [21] в продолжение проведенных ранее в СССР исследований показал, что титан теряет пассивность в безводном (метаноловом) 1 н. растворе НС1. Однако  [c.375]

Даже для высоколегированных нержавеющих сталей пассивное состояние в морской воде неустойчиво, и они склонны к питтингообразова-нию. Поэтому важная характеристика коррозионной стойкости металлов в морской воде — потенциал питтингообразования. В морской воде смещение потенциала питтингообразования в отрицательную область происходит при увеличении концентрации ионов хлора, повышении температуры и pH.  [c.14]

Ионное легирование железа никелем с увеличением концентрации никеля резко уменьшает предельную плотность тока пассивации и плотность тока полной пассивахщи, а также смещает потенциалы питтингообразования и перепассивации к более положительным значениям. При обеспечении 25 %-ной концентрации никеля в поверхности ионно-легированного железа область активного растворения практически отсутствует, например, в боратном буферном растворе, содержащем 2400 мг/л хлор-ионов, при pH = 8,5.  [c.74]

Точка пересечения Еп.к соответствует критическому потенциалу питтинго-шой коррозии, а Ем. п — потенциалу инициирования питтингообразования <рис. 38).  [c.87]

При < п.к питтинговая коррозия невозможна, а имеющиеся питтингн репассивируются. В области потенциалов между Еп.к и . п новые питтингн е образуются, но уже имеющиеся могут развиваться дальше. При Е Е .п происходит инициирование питтингообразования.  [c.87]

Кривые контактной усталости при пульсирующем контакте строятся для партии одинаковых образцов, испытанных при одинаковых средних напряжениях цикла (агтах)т- За критерий разрушения при испытаниях по схеме пульсирующий контакт принимается интервал времени до образования микротрещин в зоне контакта. Но так как фиксация первой микротрещины затруднительна и при исследовательских испытаниях допустимы иные критерии разрушения, то нами рекомендуется использовать момент образования пит-тингов по контуру пятна контакта. Для более точного определения числа циклов нагружения, при котором образуются первые питтин-ги, в процессе испытания образца строится график Нц = /(Л ц)> где Нп — диаметр пятна контакта (мкм), измеряемый с помощью микроскопа, Мц — число циклов нагружения (рис. 3.16). В момент ускорения питтингообразования (начало третьей стадии развития разрушения) происходит резкое увеличение пятна контакта, что означает начало разрушения при заданном уровне напряжения цикла. Определив таким образом количество циклов нагружения, при которых происходит контактно-усталостное разрушение на различных уровнях напряжений, строится график контактной усталости в координатах а тах =  [c.47]


Смотреть страницы где упоминается термин Питтингообразование : [c.72]    [c.85]    [c.85]    [c.86]    [c.93]    [c.236]    [c.275]    [c.312]    [c.312]    [c.370]    [c.375]    [c.453]    [c.453]    [c.454]    [c.15]    [c.72]    [c.3]    [c.6]    [c.83]    [c.418]   
Смотреть главы в:

Электрохимическая коррозия  -> Питтингообразование


Коррозия и борьба с ней (1989) -- [ c.227 , c.229 ]

Кислородная коррозия оборудования химических производств (1985) -- [ c.0 ]

Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.21 ]



ПОИСК



Алюминий критический потенциал питтингообразования

Алюминий питтингообразование в морской воде

Алюминий питтингообразование в речной

Влияние температуры и соотношения на питтингообразование на сталях

Критический потенциал питтингообразования

Общие закономерности питтингообразования на металлах и сплавах

Определение потенциала питтингообразования

Питтингообразование в морской воде

Питтингообразование в речной воде

Питтингообразование на нержавеющих сталях

Питтингообразование сталей

Питтингообразования коэффициеят

Питтингообразования критическая температура

Потенциал питтингообразования

Состояние питтингообразования

Сталь питтингообразование в речной



© 2025 Mash-xxl.info Реклама на сайте