Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полимер-бетоны

Бетон обычного состава неустойчив против действия кислот, щелочей, машинных масел, смазочно-охлаждающих жидкостей. Наиболее надежный способ защиты от воздействия этих веществ — покрытие бетонных деталей листовыми металлическими оболочками. Стойкость бетонов против химических веществ можно значительно повысить введением полимеров типа силиконов (полимер-бетоны).  [c.194]


В теории ползучести изучаются законы связи между напряжениями и деформациями и методы решения соответствующих задач. Ползучесть материалов — это свойство медленного и непрерывного роста упругопластической деформации твердого тела с течением времени под действием постоянной внешней нагрузки. Свойством ползучести в большей или меньшей мере обладают все твердые тела металлы, полимеры, керамика, бетон, битум, лед, снег, горные породы и т. д. При нормальной температуре некоторые материалы (металлы, полимеры, бетон) обладают свойством ограниченной ползучести. С ростом температуры ползучесть материалов увеличивается и их деформация становится неограниченной во времени. Особенно опасно для элементов конструкций и деталей машин проявление свойства ползучести при высоких температурах. Уже при небольших напряжениях материал перестает подчиняться закону Гука. Ползучесть наблюдается при любых напряжениях и указать какой-либо предел ползучести невозможно. В отличие от обычных расчетов на прочность, расчеты на ползучесть ставят своей целью не обеспечение абсолютной прочности, а обеспечение прочности изделия в течение определенного времени. Таким образом, при расчете изделия определяется его долговечность.  [c.289]

Свойства ползучести и длительной прочности проявляются у углеродистых сталей при Т > 300 С, для легированных сталей при Т > 350°С, для алюминиевых сплавов при Т > 100 С. Для некото-])ых материалов (полимеров, бетонов и др.) указанные свойства наблюдаются и нрн нормальных температурах.  [c.87]

В предыдущих разделах предполагалось, что при неизменных во времени воздействиях напряжен но-деформированное состояние рассматриваемого тела остается неизменным. Однако многие материалы, например полимеры, бетоны, композиты и т. д., даже при комнатных температурах обладают способностью медленно деформироваться во времени при постоянных напряжениях. Это свойство материалов называют ползучестью.  [c.46]

Полимербетоны получают из минерального вяжущего вещества (цементы, гипс и др.), полимера и заполнителя или без него. Бетон, в котором связующим веществом является органический полимер, называют полимер-бетоном.  [c.319]

В наш век с усложнением форм строительных конструкций, появлением авиастроения, разнообразными запросами машиностроения роль методов теории упругости резко изменилась. Теперь они составляют основу для построения практических методов расчета деформируемых тел и систем тел разнообразной формы. При этом в современных расчетах учитываются не только сложность формы тела и разнообразие воздействий (силовое, температурное и т. п.), но и специфика физических свойств материалов, из которых изготовлены тела. Дело в том, что в современных конструкциях наряду с традиционными материалами (сталь, дерево, бетон и т. д.) широкое применение получают новые материалы, в частности композиты, обладающие рядом специфических свойств. Так, армирование полимеров волокнами из высокопрочных материалов позволяет получить новый легкий конструкционный материал, имеющий высокие прочностные свойства, превосходящие даже прочность современных сталей. Но наличие полимерной основы наделяет такой композитный материал помимо упругих вязкими свойствами, что обязательно должно учитываться в расчетах. Даже в традиционных материалах в связи с высоким уровнем нагружения, повышенными температурами возникает необходимость в учете пластических свойств. Все эти вопросы теперь составляют предмет механики деформируемого твердого тела.  [c.7]


Сопоставляя коэффициенты пропорциональности в формуле (2.7) и во второй формуле (2.6), находим большое сходство между Е VI с по той роли, которую они играют в этих выражениях. Отсюда еще одно название для модуля Е — это мера жесткости материала. Например, из табл. 2.1 видно, что вольфрам жестче стали вдвое, а сталь жестче бетона примерно на порядок. В подобной иерархии материалов наименьшей жесткостью обладают мягкие полимеры.  [c.44]

Для хрупких тел, примерами которых могут служить стекла, силикаты, полимеры в стеклообразном состоянии, бетон, закаленные стали, графит и другие материалы, критерий разрушения может быть сформулирован в принципе так же, как критерий пластичности, в виде некоторого соотношения между компонентами тензора напряжений  [c.654]

Коэффициент конструктивного качества у стали Ст. 3 составляет 0,5 бетона—0,06 сосны—0,7 а у СВАМ—2,2, дельта-древесины—2,5. Эти прочностные и конструктивные качества наполненных полимеров позволяют применять их в несущих нагрузку конструкциях зданий [7].  [c.26]

Конструкционные материалы. В качество материала машиностроительных конструкций используются в основном металлы и их сплавы, а также различные неорганические и органические материалы (полимеры, пластмассы, волокна, керамика и др.). В последнее время нашли применение композиционные материалы, состоящие из высокопрочных нитей стекла, бора, углерода и связующего (полимеров и металлов). В строительных конструкциях используются бетон (смесь крупных и мелких каменных частиц, скрепленных цементом), железобетон (бетон, усиленный стальными стерж-нями), кирпич, дерево и другие материалы.  [c.11]

Диэлектрики Резина, полимеры Керамика, металлокерамика Бетон, железобетон Монокристаллы Многослойные материалы Стекло  [c.19]

Стареющие материалы, типичными представителями которых являются бетон, древесина, многие полимеры и пластмассы, горные породы, лед и др., характерны тем, что их физико-механические свойства меняются во времени, т. е. зависят от возраста материала.  [c.8]

В то же время в результате ряда экспериментальных исследований установлено, что упругомгновенные деформации остаются пропорциональными напряжениям вплоть до значений, почти соответствующих пределам прочности Н для таких стареющих материалов, как бетон, древесина, многие полимеры, пластмассы и др. [8, 78, 306].  [c.21]

Исследований, посвященных теории ползучести стареющих материалов, ранее было проведено сравнительно немного. Однако за последние десятилетия они получили интенсивное развитие в связи с изучением ползучести бетона, железобетона, полимеров, пластиков, льда, грунтов, горных, пород и других материалов.  [c.60]

Склерометрические методы. Данные методы получили широкое распространение при неразрушающем контроле прочности, твердости и упругости в таких материалах как металлы, бетоны, древесина, кристаллы, полимеры и др. Сущность данных методов  [c.101]

С появлением композиционных материалов из бетона, металлов, стекла и полимеров перед архитектурой и строительством открылись новые блестящие возможности.  [c.134]

У многих материалов (полимеры, бетон, металлы при повышенной температуре) в эксплуатационных условиях закон связи а(е) существенно зависит от времени. Изменение напряжений и деформаций во времени при постоянных внешних нагрузках называют ползучестью (явление ползучести можно обнаружить при растяжении материалов даже в условиях нормальной температуры). Так, при растяжении образца для снятия показаний тензометров приходится, как правило, приостанавливать процесс нагружения либо по силам, либо по деформациям. Такая остановка в упругой области практически не приводит к изменению показаний во времени. Если остановка происходит в пластической области, то для машин кинематического типа (e = onst) благодаря вязкости материала происходит заметное самопроизвольное падение напряжений (рис. 1.12), т. е. релаксация. При нормальной температуре Та напряжение а асимптотически стремится к  [c.37]

На кривой неограниченной ползучести можно выделить участок ВС установившейся ползучести (е = onst). Металлы и некоторые полимеры, бетон в условиях нормальной температуры обладают ограниченной ползучестью. В условиях же повышенной температуры проявляется неограниченная ползучесть материалов, в этом случае правомерна постановка задачи о длительной прочности. Для суждения о прочности достаточно определить время х до разрушения при заданном уровне напряжений и построить  [c.38]


К таким материалам относятся полимеры, бетоны, сплавы, металлы (при повышенных температурах) и др. Некоторые конструкции под нагрузкой (например, амортизирующие и виброза-щитные устройства) в целом ведут себя как упруговязкие системы.  [c.215]

Комбинации упругих и вязких элементов позволяют удовлетворительно описать процесс деформации вязко-упругих материалов (полимеры, бетоны и т. д.). Трехэлементная модель с переменными параметрами (рис. И, а) является общей моделью вязко-упругого материала. Она приводится к модели Фойгта при j = oo и к модели Максвелла при Е2—О. Обобщенные модели среды Максвелла или среды Кельвина можно рассматривать как трехэлементную модель с переменными параметрами. При этом среда обладает мгновенно-упругим поведением и задерлианной упругостью соответствующие модули  [c.51]

Полимер-цементный бетон представляет собой смесь портландцемента с высокомолекулярными органическими веществами, не содержащую или содержащую заполнители. Ассортимент полимеров, применяющихся для изготовления полимер-бетонов, весьма широк дивинилстирольный латекс, поливинилацетат, поливиниловый спирт, поливинилхлорид и др. Заполнителем служат кварцевый песок, гранитная и мраморная крошка, пробка, керамзит и т. п. При использовании поливинил-ацетата оптимальное соотношение полимер-цемент 0,2 (по весу). Такая смесь в растворе 1 3 с песком давала бетон с прочностью при изгибе 214 кГ/см и сжатии — 480 кПсм , а в растворе 1 6 соответственно 124 и 323 кГ1см . Объемный вес бетона зависит от вида заполнителя и изменяется в пределах 400—2)00 кг м . Полимер-цементный бетон характеризуется высокой прочностью при растяжении, ударе и сжатии, повышенной прочностью сцепления с заполнителями, арматурой, а также высокими значениями водонепроницаемости и стойкости в агрессивных средах. Усадочные деформации полимербетона примерно такие же, как и обычного бетона. Полимер-цементный бетон применяют для изготовления различных покрытий полов, перронов, дорог и аэродромов, для отделки стен, гидроизоляции. Из него можно готовить железобетон, ячеистый полимербетон, полимер-асбестоцемент и т. п.  [c.520]

Полимер-бетоны 1. 194 Полиропание под давлением 1. 318 Поляризация круговая 1. 156, 157 Поляроиды Ленда-см. Ленда поляроида Порог трещинообразовання-Определение 1. 286 - Понятие I. 278 Портланд-цемент - Марки 1. 192  [c.347]

Атомная базовая технологическая установка АБТУ-Ц-50. Наиболее проработанным отечественным проектом установки с газоохлаждаемым реактором и шаровыми твэлами являлся технический проект атомной базовой технологической установки АБТУ-Ц-50 электрической мощностью 50 МВт с радиационными контурами, образованными циркулирующими в них шаровыми твэлами Высокотемпературный реактор ВГР-50 тепловой мощностью около 140 МВт имел стальной силовой корпус с размерами, аналогичными размерам серийного корпуса ВВЭР-1000. Мощность у-излучения, генерируемая установкой, составляла около 500 кВт, или 0,4 % тепловой мощности реактора, что соответствовало Y-излучению 25-10 г-экв Ra и позволяло организовать промышленное производство радиационно-химической продукции (радиационно-модифицированного полиэтилена, полимер-бетона, полимер-древесины) и выполнять стерилизацию медикаментов и белковых продуктов.  [c.175]

Сейчас механика разрушения является одной из наиболее бурно развивающихся областей механики. К числу основных направлений ее исследований относятся проблемы разрушения в условиях значительных пластических деформации, разработки методов механики разрушения неметаллических материалов (композиты, керамика, полимеры, бетон, горные породы и т. д.), изучение распространения трещин при динамическом нагружении и при наличии агрессивных сред, прогнозирование ресурса и падежиости алементов конструкции с учетом случайного характера возникповения и развития в них дефектов. Не следует забывать и о положительных аспектах разрушения и связанных с этой задачей проблемах облегчение разрушения при резании, разрушение нри извлечении ценных пород и др.  [c.70]

I — корпус емкости 1 — лестница металлическая 3 — прифориовка 4 — полимер-бетон 5 — анкерное крепление.  [c.148]

Армируя бетон стеклянным волокном, получают стеклобетон, используемый в строительстве судов, понтонов. Бетон, получаемый из минерального вяжущего вещества (цементы, гипс и другие), полимера (натуральный и синтетические каучуки, битумы, поливинилхлорид и другие) и наполнителей, называют полимер-бетонами. Они устойчивы к кислотам, щелочам, растворам солей и газам. Их применяют для покрытия полов в химических производствах, изготовления армированных конструкций, гидроизоляции, при строительстве бетонных дорог, перронов и т. д.  [c.83]

Латекс СКС—65 ГП (ГОСТ 10564—63 ) получают совместной полимеризацией бутадиена и стирола в (соотношении 35 65) в водной эмульсии с применением в качестве эмульгатора некаля и натриевого мыла синтетических жирных кислот. Вязкость продукта 11— 16 сек. Применяют для изготовления эмульсионных красок, полимер-бетонов и различных покрытий. Поставляют в чистой эмалирова -ной или луженой таре (бидонах, барабанах) или в чистых железнодорожных цистернах с внутренним антикоррозийным покрытием. В холодное время года латекс должен транспортироваться в отапливаемых цистернах с теплоизоляцией. Хранят его при температуре не ниже 10 и не выше 35°С следует предохранять от действия прямых солнечных лучей.  [c.65]

В настоящее время находят применение полимер-бетоны, т, е. составы, получаемые соединением минеральных вяжущих (цементов, гипса, извести) и наполнителей с органическими полимерными связующими (смолами, каучуками, поливинилхлоридом и др.). К таким материалам относится, например, фаизол-бетон на основе фурфурол-ацетоновой смолы, имеющей в зависимости от назначения различный состав. Для отверждения фаизола применяют, например, бензолсульфокислоту. Полимер-бетоны могут использоваться в качестве покрытий или армированных конструкций.  [c.136]

Станины ТРА обычно литые или сварные, но могут быть изготовлены из полимер-бетона или гранитана (возможно комбинированное исполнение).  [c.380]


Величина К определяется сорбциовными характеристиками полимер-бетона. Очевидно, что и Кс1 >с1. Следовательно, с приемлемое для технических целей точностью можно считать  [c.58]

Определяющие уравнения. Приведенные в предыдущем параграфе уравнения состояния теории ползучести для неодно-родно-стареющих тел характерны тем, что они линейным образом связывают напряжения и деформации. Это свойство наблюдается при умеренных напряжениях почти у всех стареющих материалов, в том числе у бетона, полимеров и т. п.  [c.21]

Кроме сказанного выше, обратим внимание на следующее важное обстоятельство. Нелинейные уравнения теории ползучести (2.5), (2.6) или (2.8), строго говоря, применимы лишь в случае отсутствия разгрузок. В самом деле, опытами [17, 23] установлено, что в области нелинейной ползучести для таких типичных стареющих материалов, как бетон, полимеры и ряд других, последействия в них и после разгрузки при различных уровнях напряжения не следуют тому же нелинейному закону, по которому развиваются деформации пoJПзyчe ти при нагружении их согласно уравнениям (2.5), (2.6) или (2.8) нелинейной теории ползучести. Более того, на основании некоторых предварительных данных представляется возможным полагать, что явления последействия в стареющем материале при его разгрузке в области высоких напряжений по своему характеру будут протекать ближе к линейному закону, хотя при этом по-прежнему будет иметь место неполная обратимость деформации ползучести. Поэтому нелинейная теория ползучести неоднородно-стареюпдах тел, основанная на исходных уравнениях состояния (2.5), (2.6) или (2.8), т. е. на допущении подобия кривых ползучести, и не учитывающая явление смягчения нелинейности деформации ползучести стареющего материала со временем, а также различия между эффектами нагрузки и разгрузки, является хотя и важным, но лишь первым шагом в создании нелинейной теории ползучести нёоднородно-стареющих тел.  [c.26]

Изучение механического поведения композиционных материалов включает аналитические исследования на двух уровнях абстрагирования. В общепринятой терминологии области этих исследований носят названия микромеханики и макромеханики. В микромеханике делается попытка распознать тонкие детали струк1уры материала, т. е. рассмотреть в действительности неоднородное тело, состоящее из включений — волокон, частиц или кристаллов — н матрицы, в которой размещены эти включения. Хотя термин композит объединяет широкое многообразие материалов, таких, как бетон, полукристаллические полимеры, бумага, кожа, кость и т. д., здесь будут обсуждаться главным образом материалы, армированные волокнами. Следует разъяснить, что термин микромеханика обычно не подразумевает исследований на атомном уровне или использования тензоров напряжений высших порядков, подобных фигурирующим в теориях моментных напряжений или теориях градиентов деформаций, хотя имеются и работы такого типа (см., например, Садовский и др. [16], а также Кох [8]).  [c.14]

Многие машиностроительные материалы представляют собой тот или иной вид композиционных материалов. Например, сталь подвергают окраске, чтобы увеличить стойкость к разрушительному действию коррозии. Стволы первых артиллерийских орудий изготовляли из дерева, а затем дерево скрепляли с латунью, чтобы повысить их стойкость к воздействию внутреннего давления. Прочность бетона повышается при использовании армируюш их стержней. Возникновение промышленности, производящей пластмассы, относят к 1868 г., когда Хайдтом был открыт целлулоид. Вслед за этим в 1909 г. Бикландом была получена фенолформальдегидная смола, в 1938 г. появился найлон. В 1942 г. впервые были изготовлены полиэфиры и полиэтилен. В 1947 г. появились эпоксидные смолы и полимеры на основе сополимера акрилонитрила, бутадиена и стирола [3]. В начале 50-х годов для защиты от коррозии стали использовать термореактивные пластмассы. В это же время началось впервые изготовление коррозионно-стойкого оборудования. Судостроительная промышленность явилась первым крупным потребителем и изготовителем армированных пластиков. Армированные пластики не получили бы такого широкого распространения, которое они имеют в настоящее время, не будь заинтересованности судостроительной промышленности. Долгое время отсутствовала информация об этих материалах, однако, в конечном счете, основные необходимые сведения об армированных пластиках как конструкционных материалах были получены от самих судостроителей.  [c.310]

Длительная прочность исследовалась для бетонов на явдком стекле с добавкой полимеров (силикатополимербетонов) и без добавок, как при сжатии, так и при растяжении.  [c.93]

ТУ 7-19-4-77 стойкие в серной — до 50%, азотной —до 10%, соляной — до 36 7о, фосфорной до 98 % кислотах, едком натре— до 40%. Они предназначены для изготовления полимер-железобетонных строительных конструкций, стеновых панелей и нейтрализации агрессивных жидкостей, вентиляционных тоннелей и каналов. Крепление полиэтиленовых листов осуществляется заанкериванием ребер с цилиндрическими утолщениями в бетон, укладкой в опалубку или утапливанием в поли-мерсиликатном растворе.  [c.69]

Дальнейшее обобщение линейной теории вязкоупругости состоит в переходе к нелинейным уравнениям вида (10.41) или (10.42), т. е. к соотношениям указанного вида при нелинейных операторах Р и R. Нелинейная теория вязкоупругостн позволяет получить достаточно хорошее описание ползучести бетона и полимеров при различных режимах, в том числе неизотермических. В то же время этой теорией не охватываются необратимые процессы, протекающие мгновенно (атермическая пластичность) такие явления, как было указано, характерны в первую очередь для металлов. Тела, обладающие упругостью, вязкостью и пластичностью, описываются теорией упруго-вязко-пластических сред. Реологические уравнения этой теории уже не могут быть представлены в виде (10.41) или (10.42) (даже при нелинейных операторах Р и R ) подобно тому, как соотношения между напряжениями и деформациями для упруго-пластического тела нельзя записать в виде конечных (функциональных) связей. В рамках упомянутой теории и следует искать описание поведения металлов при достаточно высоких температурах.  [c.754]

Поливинилацетат (ПБА) — полимер винилацетата. Твердое бесцветное прозрачное нетоксичное вещество плотностью 1,19 г/см с температурой размягчения 26—28° С, не растворимое в бензине, минеральных маслах, воде. Растворим в органических растворителях (этиловый спирт, этилацетат), обладает хладо-текучестью и высокой адгезией к различным материалам. Применяется в качестве исходного продукта для получения поливинилового спирта и поливи-нилацеталей, а также для изготовления эмульсионных красок, клеев для древесины, бумаги, кожи, тканей и т. д., для улучшения качества бетона (пластобетон).  [c.249]


Смотреть страницы где упоминается термин Полимер-бетоны : [c.98]    [c.135]    [c.193]    [c.305]    [c.65]    [c.53]    [c.193]    [c.21]    [c.753]    [c.9]    [c.323]    [c.61]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.194 ]



ПОИСК



Бетон

Полимерия

Полимеры



© 2025 Mash-xxl.info Реклама на сайте