Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность стекловолокна

Волокна и ткани. Стекло в толстом слое — хрупкий материал, но тонкие стеклянные изделия обладают повышенной гибкостью. Весьма тонкие (диаметром 4— 7 мкм) стеклянные волокна имеют уже настолько высокую гибкость, что могут обрабатываться приемами текстильной технологии. На рис. 6-36 дана зависимость прочности при растяжении такого волокна от его диаметра. Большая гибкость и прочность стекловолокна объясняется ориентацией молекул поверхностного слоя стекла, имеющей место при вытягивании стекловолокна из расплавленной стекломассы и его быстром охлаждении.  [c.165]


ВЛИЯНИЕ УСЛОВИИ ИЗГОТОВЛЕНИЯ КОМПОЗИТА НА ПРОЧНОСТЬ СТЕКЛОВОЛОКНА В АЛЮМИНИИ [4)  [c.340]

Исследования, проведенные в Англии, привели к разработке армирующих листов и проволоки, которые использовались для изготовления трубопроводов. Для улучшения абразивной и химической стойкости стеклопластиков часто совместно со стекловолокном применяют органическое волокно. При воздействии ще.лоч-ных сред могут быть использованы полиакриловые, полиэфирные и полипропиленовые волокна. Некоторые органические волокна незаменимы при циклическом воздействии на слоистый пластик давления и температуры, так как они обеспечивают высокую совместимость армирующего наполнителя со связующим. Полипропиленовое волокно можно использовать в конструкциях из армированных пластиков, в качестве армирующего материала для перегородок. Хотя оно не обладает прочностью стекловолокна, оно успешно использовалось в конструкциях емкостей из армирован-  [c.312]

Прочность смолы также оказывает определенное влияние на механические свойства стеклопластиков. Прочность стекловолокна будет полностью реализована в том случае, когда относительное удлинение при растяжении смолы меньше относительного удлинения при растяжении применяемого стекловолокна. Прочность смолы может повысить прочность стеклопластика, если относительное удлинение ее при растяжении превосходит относительное удлинение стекловолокна. Полное использование прочности смолы и стекловолокна возможно тогда, когда они имеют одинаковое относительное удлинение (оптимальный случай). Смолы с низким относительным удлинением при растяжении, т. е. хрупкие, использовать не следует.  [c.152]

Стекловолокниты — это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качестве наполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях). Для практических целей используют волокно диаметром 5—20 мкм с 0р = 600--3800 МПа и е = 2- 3,5 %.  [c.464]

На рис. 20.10 дана зависимость прочности при растяжении такого волокна от его диаметра. Большая гибкость и прочность стекловолокна объясняется ориентацией молекул поверхностного слоя стекла, имеющей место при вытягивании стекловолокна с очень большой скоростью из расплавленной стекломассы и быстром охлаждении.  [c.198]

Рис. 223. Зависимость прочности стекловолокна от его диаметра Рис. 223. Зависимость прочности стекловолокна от его диаметра

По прочности стекловолокна значительно (на один-два порядка пре-  [c.16]

Применение стеклянной ткани в качестве наполнителя пластических масс позволило сочетать в готовом изделии высокую механическую прочность и термостойкость с высокими диэлектрическими свойствами. Прочность стекловолокна постепенно снижается под действием кислорода воздуха особенно во влажной атмосфере и при повышенной температуре. Атмосферостойкость стекловолокна можно повысить, уменьшив содержание окислов щелочных металлов в исходной стекломассе. Однако снижение содержания этих окислов вызывает повышение температуры размягчения стекломассы, что затрудняет изготовление волокна. Стеклянная ткань, пропитанная термореактивной поликонденсационной смолой (фенольно-формальдегидной, меламино-формальдегидной), теряет 15—20% своей первоначальной прочности во время прессования изделий, так как этот процесс проходит при повышенной температуре и сопровождается выделением паров воды. Для сохранения первоначальной прочности стеклоткани целесообразно использовать в качестве связующего термореактивные полимеризационные смолы (контактные смолы), так как их превращение в термостабильное состояние во время формования изделий не сопровождается образованием водяного пара. Не менее эффективной является и предварительная пропитка стеклоткани кремнийорганическими веществами, образующими на поверхности волокна защитный гидрофобный слой.  [c.50]

Стекло приобретает невероятную прочность на разрыв, если его вытянуть в волокна тоньше человеческого волоса (эта высокая прочность волокна не является принадлежностью исключительно стекла — волокна нейлона или полипропилена обладают высочайшей прочностью, что является следствием выравнивания молекул под воздействием вытягивания материала). В лабораторных условиях прочность стекловолокна на разрыв может составлять свыше 70 ООО кг/см , а учитывая различные реальные условия эксплуатации, прочность может быть равна 17 500 кг/см . До недавнего времени стекловолокно являлось, несомненно, самым прочным конструкционным материалом.  [c.52]

Армирование углеродным волокном. Последние несколько лет ведутся значительные исследования по разработке материалов, превышающих прочность стекловолокна, в частности для авиационной и космической промышленности. Сначала подавало надежды выращивание кристаллических усов на алюминии, но в начале 60-х годов в Великобритании начались работы по использованию углеродных волокон.  [c.57]

Основа прочности стеклопластов заложена в свойствах наполнителя, т. е. стекловолокна, поскольку прочность связующих находится лишь в пределах 400—1000 кг/си. Прочность стекловолокна объясняется его формой, вернее, диаметром волокна, и чем меньше диаметр, тем выше удельная прочность стекловолокна. Данные о прочности стекловолокна на разрыв для объемных и нитевидных образцов приведены в табл. 39.  [c.183]

Химическая стойкость стекловолокон к действию различных химических веществ зависит от состава стекла и характеризуется потерей прочности. Так, минеральные кислоты (азотная, соляная, серная) снижают прочность стекловолокна на 15%, а растворы едкого натра — на 30%. Органические растворители практически не оказывают влияния на прочность стекловолокна.  [c.470]

Высокая прочность композиционных пластиков зависит от применяемых наполнителей (стеклоткани и стекловолокна, хлопчатобумажные ткани и волокна, металлическая сетка и проволока,  [c.433]

Экспериментально к теоретической прочности материалов удалось приблизиться путем образования из них нитевидных кристаллов—усов. Эти очень тонкие кристаллы (толщиной 0,5...2 мкм н длиной 2... 10 мм) содержат мало дефектов структуры, вероятность обнаружения которых уменьшается с уменьшением объема или поперечных размеров. В силу этих причин прочность волокон стекла (стекловолокно) существенно выше прочности стекла в монолите. Полученные на основе волокон структуры (стеклопластики и т. п.) обладают высокой удельной прочностью.  [c.131]

Более полно удается использовать прочность стеклянного волокна в стеклотекстолитах, получаемых из стеклянной ткани, пропитанной полимерной смолой. При разрушении стеклотекстолитов появляются трещины в полимерной смоле — в местах перегиба нитей стеклоткани. Поэтому и здесь прочность стеклянных волокон используется не полностью. Наиболее полно можно использовать ее при изготовлении некоторых типов конструкций, например труб, осесимметричных оболочек, когда удается наматывать стекловолокно в разных направлениях под натяжением. Таким путем можно добиться одинаково высокой прочности в различных направлениях. Так, для стеклопластиков, армированных в одном направлении, удается получить при растяжении прочность до 1 ГПа (модуль упругости Е = = 42 ГПа). Плотность стеклопластика вчетверо меньше плотности стали, а потому удельная прочность его (т. е. прочность, приходящаяся на единицу массы) оказывается в несколько раз более высокой, чем  [c.43]


Как меняется прочность на разрыв стекловолокна при повышении влажности воздуха  [c.141]

Система алюминий — кварцевое стекловолокно будет рассмотрена также в связи с прочностью композитов и их усталостью.  [c.340]

Стекловолокнистая изоляция отличается большой нагревостой-костью. Длительная работа стекловолокнистой изоляции (непропи-танной) возможна при температуре до 250° С, кратковременная — при нагреве до 500° С. После 24-часового прогрева при 250° С прочность на разрыв стекло-ленты снижается только вдвое. Механическая прочность стекловолокна обусловлена наличием на его поверхности дефектов в виде микротрещин. Весьма тонкое волокно с диаметром менее 10 мк отличается высокой механической прочностью. С увеличением диаметра прочность уменьшается, так как возрастает концентрация (на единицу поверхности) таких дефектов. Прочность волокна из бесщелочного стекла выше, чем из щелочного (рис. 9.3). В сухом воздухе прочность волокна значительно больше, чем во влажной атмосфере. Дело в том, что поверхность трещины на стекловолокне покрыта гелями кремниевой  [c.137]

Метод намотки предполагает применение непрерывного армирующего наполнителя с целью наиболее эффективного использования прочности стекловолокна. Стеклоровницу пропускают через ванну со связзшщим, а затем наматывают на оправку определенной формы. Можно также использовать предварительно пропитанную и высушенную ровницу. Намотку непрерывного стекловолокна осушцствляют на специальных токарных станках, где обеспечивается определенная ориентация волокна, необходимая для достижения максимальной прочности в требуемом направлении. После намотки определенного числа слоев проводят отверждение намотанной на оправку заготовки при комнатной температуре или в печи.  [c.374]

Счастье и стекло — как легко они ра эбивают-ся —говорят немцы. Справедлива ли эта поговорка по отношению к стеклу Ведь прочность стекловолокна на разрыв достигает при диаметре 2—б микрон 600—200 кг/мм2, что больше в 5 раз, чем у капрона, в б раз, чем у шерсти, и более чем в 50 раз, чем у массивного стекла.  [c.99]

Механическая прочность кварцевого стекла в процессе нагревания до 1200 "С плавно возрастает и становится на 50—60% выше прочности при комнатной температуре. Имея коэффициент термического расширения в 10—20 раз меньший, чем у обычного промышленного стекла, кварцевое стекло отличается исключительно высокой термостойкостью (выдерживает резкое охлаждение в воде после нагрева до 1000 °С). Кварцевое стекло — незаменимый материал для изготовления химически стойкой аппаратуры, трубопроводов. Стекловолокно, используемое в различных стеклотканях и в пластмассах — стекловолокнитах, отличается исключительно большой прочностью, зависящей от химической природы стекла, от диаметра нити и способа ее получения. При диаметре волокна 3—4 мкм прочность стекловолокна при растяжении доходит до 3700 кГ1мм (при 6,8 кПмм в объемных образцах). Прочность силикатных стекол при том же диаметре волокна раз в 10 меньше. Промышленностью изготавливается пленочное или чешуйчатое стекло, используемое, в частности, в стеклотекстолитах. На его основе тексто-литы (при 90% содержании по весу стекла) получаются исключительно прочными (Опч до 25 кПмм ) и светопрозрачными.  [c.356]

ПОЯВЛЯЮТСЯ повреждения, обусловленные внешними причинами, прочность стекла остается без изменения. Согласно Гриффитсу, С уменьшением диаметра уменьшаются дефекты и возрастает прочность [1.5]. Гриффитс указывал на то, что в действительности с уменьшением диаметра происходит увеличение прочности стекловолокна. На рассматриваемом рисунке пунктирными линиями показаны результаты, полученные для выпускаемого промышленностью волокна, диаметр которого составляет примерно 9 мкм. Результаты получены как для волокна, поперечное сечение которого представляет круг, так и для пустотелого волокна, имеющего поперечное сечение в виде кольца. Помимо стекловолокон в композитах используются волокна других материалов, примеры которых приведены в табл. 1.4.  [c.16]

Стекловолокниты — это композиция, состоящая из связующего— синтетической смолы и стекловолокнистого наполнителя. Стекловолокно получается путем продавливания расплавленной стекломассы через фильеры (отверстия в дне электропечи). Применяется непрерывное стекловолокно или короткое волокно, причем прочность непрерывного волокна выше в 3,5 раза, чем короткого. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях). Максимальное значение прочности наблюдается для диаметра 1—3 мкм (рис. 223). Для практических целей употребляется волокно диаметром 5—20 мкм. Прочность при разрыве такого стекловолокна составляет от 60 до 380 кПмм , удлинение 2—3,5%. Однако при дальнейшей текстильной переработке наблюдается значительная потеря прочности.  [c.424]

Стекловолокниты — это композиция, состояищя пз связующего — синтетической смолы и стекловолокнистого наполнителя. Стекловолокно получается продавливанием расплавленной стекломассы через фильеры (отверстия в дне электропечи). В качестве наполнителя применяются непрерывное стекловолокно или короткое волокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях) (рис. 205). Для практических целей употребляется волокно диаметром 5 — 20 мкм с сТв = 60380 кгс/мм- и s = 2- 3,5%. Высокомодульные волокна (ВМ-1, ВМП, М-11) имеют (7в = 390 ч-470 кгс/мм" и 11000 кгс/мм Однако при дальнейшей текстильной переработке наблюдается значительная потеря прочности.  [c.411]

Стекловолокно получается из расплава неорганического стекла путем вытягивания массы, вытекающей через фильеры диаметром около 1 мм. Скорость вытягивания около 2 ООО м,1мищ диаметр получаемых нитей несколько микронов. При вытягивании происходит ориентация молекул, способствующая повышению гибкости и механической прочности стекловолокна.  [c.149]

Помимо связующего в состав композ1щионных пластмасс входят следующие составляющие 1) наполнители различного происхождения для повышения механической прочности, теплостойкости, уменьшения усадки и снижения стоимости композиции органические наполнители — древесная мука, хлопковые очесы, целлюлоза, хлопчатобумажная ткань, бумага, древесный шпон и др. неорганические — графит, асбест, кварц, стекловолокно, стеклоткань и др. 2) пластификаторы (дибутилфталат, кастровое масло и др.), увели-чнийю цие эластичность, текучесть, гибкость и уменьшающие хрупкость п. тастмасс 3) смазочные вещества (стеарин, олеиновая кислота и др.), увеличивающие текучесть, уменьшающие трение между частицами композиций, устраняющие прилипание к формообразующим поверхностям пресс-форм, 4) катализаторы (известь, магнезия и др.), ускоряющие процесс отверждения материала 5) красители (сурик, нигрозин и др.), придающие нужный цвет изготовляемым деталям,  [c.428]


Для силовых конструкций преимущественно используют композитные пластики (усиленные стекловолокном и стеклотканями). Из стекловолок-нитов изготовляют обтекатели корпуса легких судов, кузова автомобилей и другие конструкции оболочкового типа. Прочность таких конструкций выдерживает сравнение с металлическими конструкциями. Недостаточную жесткость компенсируют увеличением толщин и сечений.  [c.190]

Для увеличения прочности вводят наполиителн (ткань, стекловолокно, графитное волокно).  [c.385]

Особую группу наполнителей составляют армирующие материалы на основе стекловолокна, стекложгута, стекломата, которые могут обеспечить изготовление деталей, по прочности не уступающих стали (табл. П.З) .  [c.43]

Анизотропия прочности. Выше рассмотрены случаи разной сопротивляемости разрушению материалов при растяжении и сжатии. Однако эти свойства материалов часто зависят от ориентации направлений главных напряжений по отношению к некоторым характерным для данного материала направлениям. Например, в стеклопластиках и им подобных армированных материалах, в которых в относительно мягкой матрице (пластик, металл) уложена с данной системой ориентации относительно жесткая арматура (стекловолокно, борволокно, углеродные усы и т. п.), прочность на разрыв в направлении армирования существенно выше прочности на разрыв в перпендикулярном направлении. В то же время прочность  [c.170]

Первое состояло в искусственной организации капиллярных пор в направлении потока влаги. Ленточка термоэлектродов дополнительно обвивается слоем тонкого стекловолокна, далее из нее изготовляется спиральный или слоистый базовый элемент. Основная сложность в осуществлении этого предложения состояла в подборе степени полимеризации эпоксидного компаунда, которым смазывалась ленточка, чтобы придать элементу достаточную механическую прочность и вместь с тем сохранить большинство капилляров между нитями стекловолокна свободными для прохождения влаги. В результате при смачивании одной из граней массообменной секции тепломассомера противоположная грань секции за счет капиллярных сил также полностью смачивается.  [c.60]

Композиционные материалы на основе системы двух нитей целесообразно изготовлять из различных по механическим свойствам армирующих волокон. Высокомодульнь]е углеродные или борные волокна могут быть расположены в направлении утка и частично в направлении основы. Арматуру, искривленную в направлении основы, изготовляют из стекловолокна. При таком комбинировании разных волокон можно значительно повысить жесткость и прочность в направлении основы и утка без заметного снижения прочности на отрыв в трансверсальном направлении и сопротивляемости сдвигу. Хороший эффект в повышении монолитности и надежности таких структур достигается также за счет модифицирования волокон 34].  [c.12]

К снижению прочности волокон могут привести и поверхностные дефекты, возникающие при изготовлении композита или при предшествующих манипуляциях с волокнами. В обоих случаях прочность волокон зависит от того, насколько грубы дефекты (в соот ветствии с теорией Гриффитса или каким-либо из ее вариантов), а также от плотности дефектов и характера их распределения. Тщательность манипулирования со стекловолокнами и волокнами окислов, позволяющая избежать появления дефектов такого-типа, уже стала общепринятым требованием.  [c.153]

Для изготовления композитов было успешно применено кварцевое стекловолокно, которое сохраняло высокую прочность после быстрого нанесения на поверхность волокна покрытия из жидкого алюминия. Нежелательное взаимодействие в системе А1 — Si02  [c.332]

В отличие от аппретов все замасливатели содержат компоненты, ослабляющие связь между полимерной матрицей и смолой. Кроме того, для обработки волокна необходимо меньшее количество (в вес. %) аппрета, чем замасливателя. Предел прочности моноволокна после аппретирования ниже, чем моноволокна после замасливания. Тем не менее предел прочности композитов с аппретированными волокнами часто оказывается выше предела прочности композитов, армированных замасленными волокнами. В расчете на единицу веса стекловолокна производство замасленных волокон дешевле, чем производство аппретированных. При выборе способа обработки волокна учитываются различные факторы и часто приходится выбирать между свойствами композитов и стовмостью их изпотавления.  [c.13]

Значительные успехи были достигнуты в области улучшения связи на поверхности раздела между минеральным волокном и пластиком. Первые полиэфирные пластики, армированные необработанным стекловолокном, имели в исходном состоянии хорошую механическую прочность. Однако после продолжительной выдержки в воде их прочность ухудшалась и составляла только 60% исходной. Было установлено, что присутствие на поверхности раздела стекло— полимер небольшого количества аппретирующих добавок, содержащих мета1крилатохромовые комплексы или ненасыщенные силаны, способствует улучшению механических свойств композита в исходном состоянии и сохранению их во влажной  [c.13]

Сведения о природе поверхности раздела, которыми мы располагаем в настоящее время, недостаточны для разработки новых аппретов, пред назначе1нных для современных стеклопластов, особенно 1в случае упрочненных термопластиков. По сравнению с 1942 г. в решении этой проблемы достигнут значительный прогресс, однако до сих пор остается необъясненной очень высокая в отдельных случаях прочность слоистых пластиков. Как правило, это связывается с оптимальными условиями, когда аппрет, стекловолокно, смола и способ изготовления — все было самым лучшим (best evers). В табл. 1 приводятся прочностные характеристики некоторых композитов, полученных в таких оптимальных условиях в Военно-морской артиллерийской лаборатории США (NOH).  [c.14]

Обычно необходимо присутствие небольшого количества воды на поверхности раздела, для того чтобы аппрет выполнял свою роль в композитах, упрочненных стекловолокном. Поэтому стеклоткань вначале выдерживали в среде с различной относительной влажностью при 22 °С не менее 75 суток, а затем обрабатывали. аппретом МОЬ-24 в органичеюких растворителях [33]. При изменении относительной влажности воздуха от 50 до 88% прочность слоистого материала изменялась незначительно. Оптимальные результаты были получены после выдержки стеклянных волокон в среде с относительной влажностью более 70%. Следовательно, относительная влажность воздуха менее 50% может оказаться слишком низкой, чтобы существовала достаточно прочная связь аппрета со стеклом.  [c.28]


Смотреть страницы где упоминается термин Прочность стекловолокна : [c.137]    [c.347]    [c.263]    [c.201]    [c.177]    [c.131]    [c.166]   
Смотреть главы в:

Справочник по композиционным материалам Книга 2  -> Прочность стекловолокна



ПОИСК



Статистическая связь между прочностью при сжатии и скоростью ультразвука в стекловолокните

Стекловолокниты

Стекловолокниты предел прочности

Стекловолокно



© 2025 Mash-xxl.info Реклама на сайте