Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства композитов с полимерной матрицей

СВОЙСТВА КОМПОЗИТОВ с ПОЛИМЕРНОЙ МАТРИЦЕЙ  [c.56]

Свойства композитов с полимерной матрицей  [c.57]

Свойства бериллия также исследовались для определения возможностей его использования в качестве волокнистого армирующего материала для композитов с полимерной матрицей, если он сам имелся в достаточном количестве в форме пластичной проволоки. Высокий модуль (на 40% больше, чем у стали) и низкая плотность (на 30% меньше, чем у алюминия) сделали его привлекательным конструкционным материалом для авиации, и можно было надеяться, что пластичность проволок улучшит ударные свойства композита. В работе [62] опубликованы некоторые результаты по растяжению бериллиевой проволоки диаметром 0,005 дюйм. Она разрушалась вязко даже при комнатной температуре после удлинения примерно на 1—3%. Позднее [36] исследован более детально предел упругости проволоки и определено ее остаточное удлинение при различных уровнях нагружения. Кроме того, исследованы также свойства длительной прочности проволоки при комнатной температуре. Данные показывают уменьшение прочности с ростом продолжительности действия нагрузки, однако результаты имеют большой разброс.  [c.278]


Большой класс связующих представляют полимеры. Это вязкоупругие материалы, которые даже при комнатной температуре под нагрузкой в различной степени ползут. Если в них поддерживается постоянная деформация, то напряжения релаксируют или до нуля, или до некоторого другого значения. Их диаграммы напряжение — деформация чувствительны к скорости деформации, а модуль имеет тенденцию к увеличению с увеличением этой скорости. Короче, это материалы со свойствами, зависящими от времени. Соответствующие свойства, которые позднее будут использованы при разработке временной модели композитов с полимерными матрицами, представлены в разд. III.  [c.280]

Хотя прочностные свойства композитов с дисперсными частицами как в полимерной, так и в керамической матрице подобны, цели их изготовления весьма различны. Композиты с дисперсными частицами в полимерной матрице изготавливаются и наиболее широко используются в технике, когда одновременно необходимы формуемость полимерной фазы и такие свойства, которые не присущи полимеру, но которые могут быть обеспечены наличием дисперсной фазы, обычно называемой наполнителем. Наполнитель выполняет две функции. Во-первых, это уменьшение объема более дорогого полимера. Стоимость сырья для различных фаз может различаться в 25 раз. Во-вторых, это получение улучшенных физических и термических свойств при изготовлении реального изделия, как видно из следующих примеров.  [c.13]

Использование в конструкции всех потенциальных возможностей композитов связано с решением ряда проблем. Одна из них — недостаточное понимание влияния первого разрушения слоя на последующее поведение материала в конструкции при различных внешних нагрузках и действии внешней среды. Микроскопические наблюдения обнаруживают в композитах е полимерной матрицей появление трещин в слабых слоях задолго до окончательного разрушения. Следует особо подчеркнуть, что этот процесс не имеет ничего общего с пластическим течением металлов, которое характеризуется значительным перемещением дислокаций. Появление трещин в слабых слоях не всегда сопровождается макроскопическими изменениями в материале, т. е. может не обнаруживаться на диаграмме а е). Тем не менее явление первого разрушения слоя может привести в конечном итоге к таким изменениям конструкционных свойств материала, как потеря жесткости, уменьшение долговечности, увеличенная абсорбция влаги.  [c.136]

Благодаря хрупкости свойства керамической матрицы отличаются от свойств других типов матриц. В композитах с полимерными и металлическими матрицами основная упрочняющая роль отводится волокнам, а матрица придает материалу ударную вязкость. Керамическая мат-  [c.155]


Создать общую теорию конструирования композитов весьма сложно, она находится в стадии накопления данных экспериментирования. Наиболее обоснованы методы прогнозирования свойств композитов на металлической матрице, получаемых методом порошковой металлургии, стекловолокнитов и дисперсно-наполненных полимерных материалов для простых схем армирования и изученных матриц. При создании композиционных материалов расчет различных моделей осуществляется с использованием вычислительной техники.  [c.355]

В композитах с металлической и полимерной матрицами имеется много общих проблем, связанных с поверхностью раздела. Например, аппретирование в стеклопластиках обеспечивает образование переходной зоны между упрочнителем и матрицей. С другой стороны, можно убедиться в том, что для применяемых на практике металлических композитов характерно подобное же изменение свойств при переходе через поверхность раздела. Если компоиенты полностью нерастворимы, химически инертны и не смачиваются, то в композите отсутствует связь, обеспечивающая необходимые свойства. Модифицирование поверхностей в таких композитах с целью создания связи приводит к появлению градиента состава в той зоне, где формируется связь. Из этих соображений вытекает следующее определение поверхности раздела, предложенное в первой главе  [c.78]

Влияние структуры и реакционной способности эпоксидных смол на прочность адгезионного соединения на поверхности раздела в композитах не исследовалось. Имеются данные, согласно которым потеря прочности углепластиков в результате старения может быть связана с изменением полимерной матрицы. И наконец, было показано, что вследствие разницы коэффициентов термического расширения волокна и смолы возникают остаточные напряжения в полимере и на поверхности раздела волокно — смола, что сказывается на прочностных свойствах углепластиков.  [c.270]

Все главы книги посвящены анализу неупругих свойств в задачах деформирования и разрущения композитов. Последовательно рассмотрены общие вопросы построения композитов, природа их прочности и пластичности, механизм разрушения и усталости материалов с разной укладкой арматуры дан анализ разрушения слоистых композитов в условиях одноосного и двухосного нагружений с обзором критериев предельных состояний для анизотропных материалов осуществлен учет вязкоупругости в задачах деформирования и разрущения очерчены области применения линейной механики разрушения для композитов наконец, рассмотрены напряжения, возникающие вблизи волокон в процессе отверждения полимерной матрицы.  [c.5]

На основании экспериментальных данных строятся непрерывные функции изменения характеристик материала в соответствии с уравнениями (2.6), (2.7). Полученные функции представляются в дискретном виде для шага с заданным числом циклов. На этом этапе следует хорошо понимать специфические свойства полимерной матрицы и волокон. Высокопрочные волокна имеют, как правило, отличные усталостные характеристики, и изменения их модуля и прочности в процессе нагрул<ения незначительны. Свойства матрицы ухудшаются, однако, весьма значительно. Надо ожидать, что учет усталостных свойств волокон и матрицы приведет к появлению в анализе дополнительных параметров. В их числе параметр, описывающий поведение поверхности раздела волокно — матрица. Отсюда следует, что определение усталостных характеристик компонент композита и выяснение их взаимосвязи не менее важно, чем получение данных об усталостном разрушении композита в целом.  [c.89]

Квазиоднородный подход, не обеспечивая глубокого понимания поведения композита, не позволяет учесть ряд его особенностей. Например, композиты могут проявлять свойство ползучести при отсутствии каких-либо нагрузок в направлении армирования. Коэффициенты термического расширения композитов зависят в ряде случаев от времени и температуры, хотя составляющие их компоненты такими свойствами и не обладают [12]. Подобное явление связано с релаксацией термических напряжений в полимерной матрице.  [c.250]

В данной главе метод короткой балки рассмотрен вместе с другими методами, пригодными для изучения межслойного разрушения. Хотя методы механики межслойного разрушения — основной инструмент анализа разрушения, постоянное использование на практике трехточечного изгиба короткой балки заставляет уделить внимание анализу достоинств или недостатков этого метода. Кроме того, представляет интерес взаимосвязь между базовыми экспериментальными данными и поведением конструкции в целом, а также взаимосвязь между основными свойствами полимера и его поведением в виде полимерной матрицы композита.  [c.194]


Идея создания армированных пластиков чрезвычайно проста [35, с. 15 105, с. 7]. Эти материалы представляют собой композиты, арматура которых обеспечивает прочность и жесткость, а полимерное связующее — монолитность материала и формуемость. Этот принцип построения материала позволяет сочетать высокие прочность и жесткость, характерные для армирующих волокон, с технологическими свойствами, которые ценны в полимерном веществе. Таким образом, арматура служит для передачи основного потока механических напряжений, а полимерная матрица осуществляет надежную связь между отдельными элементами композита (монолитность материала) и обеспечивает простоту переработки в изделия. Путем изменения ориентации и взаимного расположения волокон удается в известной мере управлять анизотропией свойств.  [c.9]

В армированных пластиках (КВМ) армирующий волокнистый наполнитель воспринимает механические напряжения, определяя механические свойства материала — прочность, деформативность, жесткость. Полимерная матрица (связующая, находящаяся в межволоконном пространстве) служит для распределения механических напряжений между волокнами (частично она также воспринимает механические напряжения) и, что очень важно, определяет монолитность материала. Следует заметить, что в армированных пластиках (волокнистых композитах) фактически работают отдельные волокна и контактирующие с матрицей, но не нити или другие текстильные структуры в целом. Те или иные текстильные структуры важны прежде всего для создания необходимой ориентации волокон в материале или изделии.  [c.771]

Глава посвящена влиянию вязкоупругости на термомехаиическое поведение и срок службы композитов с полимерной матрицей. В первую очередь коротко рассмотрено линейное вязкоупругое поведение полимерных смол при температурах выше и ниже температуры стеклования. Далее показан простой способ учета этого поведения при оценке эффективных термомеханических свойств композитов и анализе остаточных напряжений, являющихся следствием термической и химической усадки компонент этих материалов в процессе переработки. Затем изложен анализ колебаний и распространения волн в диапазоне упругих свойств композитов. Особое внимание при этом уделено использованию алгоритма быстрого преобразования Фурье ), Разделы, посвященные линейной вязкоупругости, завершаются описанием процессов трещинообразования на микро- и макроуровне при помощи аналитических методов и алгоритма FFT, В главу также включено обсуждение предварительных вариантов моделей, позволяющих учесть влияние статистической природы дефектов на нелинейное механическое поведение композитов и характер их разрушения под действием переменных во времени нагрузок.  [c.180]

Композиты с полимерной матрицей — это армирующие волокна, монолитизированные с помощью какого-нибудь полимерного связующего (рис. 18.1). Фирмы, применяющие композиты для авиационно-космических целей, обычно не производят исходных компонентов волокйн и связующих. Заготовки им, как правило, изготавливает фирма-поставщик, располагая в заданном порядке необходимые составные части в установленных пропорциях. При этом заготовки частично отверждаются до такого состояния, чтобы их можно было обычными способами транспортировать и грузить. Такой еще не совсем готовый композиционный материал называется препрегом (в отличие от волокон, предварительно пропитанных связующим). Изготовление из него высококачественных конструкционных изделий в значительной степени зависит от качества препрега и таких факторов, как равномерность интервалов между волокнами, количество разрушенных волокон и их распределение, липкость смолы. Чтобы гарантировать выполнение стандартов качества, необходимо проводить визуальный контроль и прочностные испытания этих заготовок. Свойства, которые надлежит определять при анализе, обычно вносятся в прилагаемую спецификацию. Борное и углеродное волокна производятся и выпускаются в виде лент шириной до 76 и 305 мм соответственно. Иногда углеродное волокно выпускают в форме поперечно стеганых лент шириной до 305 мм, а для некоторых коммерческих целей — шириной до 1254 мм. Эти ленты пропитывают смолой методом мокрой пропитки (из раствора) или прессованием волокон при нагревании до Перехода смолы в В-стадию.  [c.257]

В соединении с полимерной матрицей, которой может служить эпоксидная или полиэфирная смола. В табл. II приведены характерные свойства однонаправленных композитов углеродные волокна — эпоксидная смола. В ряде научных центров проводятся исследования композитов с углеродными волокнами и металличе-  [c.364]

Первым примером такого рода композитов, получивших достаточно широкое практическое применение, служат стеклопластики (мы не говорим здесь об известных с глубокой древности саманных постройках, т. е. о композитах глина — солома, механические свойства которых совсем не плохи). Перемешивая полимерную массу с мелко изрубленным стеклянным волокном, мы получаем первый пример композита с хаотическим армированием. Прочность такой пластмассы выше, чем прочность неар-мированного материала, однако потенциальная прочность стеклянного волокна используется при этом далеко не полностью, разрушение всегда происходит по матрице, стеклянные волокна не разрываются, а выдергиваются из пластмассы. Следует заметить, что изделия из хаотически армированных пластиков, например полиэтилена, изготовляются обычными способами — путем формования, выдавливания, литья. Поэтому стандартное технологическое оборудование оказывается пригодным для получения таких изделий.  [c.684]

Максимальная реализация свойств полимерной матрицы и армирующего наполнителя в композитах возможна при наличии оптимальной адгезии, условия получения которой установить довольно трудно. Известно, что адгезия, обусловленная только плотным контактом между органическим полимером и гидрофильным минералом, не обеспечивает образования водостойкого соединения. Такое соединение не может быть образовано и посредством прямых химических связей, так как органический полимер с устойчивыми ковалентными и минерал с ионными связями являются слишком разнородными материалами. Хорошая адгезия между такими разнородными материалами может быть получена в результате иапользования третьего материала в виде промежуточного слоя между матрицей и наполнителем.  [c.9]


В отличие от аппретов все замасливатели содержат компоненты, ослабляющие связь между полимерной матрицей и смолой. Кроме того, для обработки волокна необходимо меньшее количество (в вес. %) аппрета, чем замасливателя. Предел прочности моноволокна после аппретирования ниже, чем моноволокна после замасливания. Тем не менее предел прочности композитов с аппретированными волокнами часто оказывается выше предела прочности композитов, армированных замасленными волокнами. В расчете на единицу веса стекловолокна производство замасленных волокон дешевле, чем производство аппретированных. При выборе способа обработки волокна учитываются различные факторы и часто приходится выбирать между свойствами композитов и стовмостью их изпотавления.  [c.13]

Оценка аппретирующих добавок, улучшающих связь между упрочнителем и полимерной матрицей, проводилась непосредственно по результатам физико-химических испытаний композитов. Однако на основе только экспериментальных данных нельзя достаточно полно объяснить природу адгезионной связи. Несомненно, любая научная интерпретация явлений на поверхности раздела должна коррелировать с практически получаемыми ха-рактеристикам(и (кампознтав. Поокольку даже 1К райне малые аппретирующие добавки оказывают сильное влияние на свойства композитов, то, очевидно, изучение механизма связывания оказывается полезным для выяснения природы адгезии органического полимера к поверхности минерального волокна.  [c.15]

В основном наибольшее влияние дисперсной фазы состоит в увеличении размера трещины, который влияет на все пять параметров композитов, отмеченных выше. Это влияние обычно приводит к более низкой прочности по сравнению с прочностью матрицы без второй фазы. Экспериментальные и теоретические исследования показывают, что размер трещины можно довести до минимума и тем самым получить оптимальную прочность композита при применении дисперсных частиц малого размера. Для этого требуется также незначительный разброс размеров частиц, а скопления частиц (агломераты) должны быть сведены до минимума посредством соответствующего метода введения дисперсной фазы. Как отмечено, модуль упругости композитов с дисперсными частицами зависит не только от упругих свойств двух фаз. Трещины, которые могут развиться в процессе охлаждения композита ниже температуры его изготовления, и псевдопоры, образованные под напряжением вследствие слабой связи по поверхностям раздела, приводят к более низким модулям упругости по сравнению с обычно вычисляемыми. Так как для получения оптимальной прочности необходим наибольший модуль упругости, наличие трещин может быть сведено до минимума, несмотря на большие остаточные термические напряжения путем изготовления композита с дисперсными частицами малого размера. Подобным образом можно избежать образования псевдопор при низком уровне приложенных напряжений путем обеспечения хорошей связи по поверхностям раздела между соединяемыми фазами. Следует отметить, что, хотя большие остаточные напряжения обычно нежелательны, они могут быть полезны в полимерных композитах для увеличения уровня приложенных напряжений, приводящих к образованию псевдопор, в тех случаях, когда невозможно получить хорошую связь по поверхностям раздела.  [c.55]

Рассмотрено применение метода конечных элементов для расчета термических усадочных напряжений ) в композитах. В введении отмечено, что большинство ранее предложенных методов основано на линейном подходе. Это приводит, как правило, к завышенной оценке уровня усадочных напряжений. Основной источник ошибок заключается в неучете ползучести полимерной матрицы. В этой главе остаточные напряжения, рассчитанные с учетом ползучести матрицы, сравниваются с соответствующими напряжениями, полученными в предположении об отсутствии ползучести. Показано влияние температурного режима цикла отверждения на напряженное состояние композита носле завершения технологического процесса. Рассмотрены такие ситуации, когда превышение остаточными напряжениями пределов текучести одной из компонент композита приводит к изменениям его деформативных свойств. Дана оценка влияния остаточных напряжений на неунругое поведение композита.  [c.249]

На рис. 7.5,6 показано распределение термических напряжений в матрице композита с ортогональной схемой армирования [0°/90°]s (свойства компонентов те же, что и у рассмотренного однонаправленного композита). Как видно, распределение усадочных напряжений в матрице изменяется со схемой армирования композита. У композита [0790°]s напряжения в матрице в направлении армирования значительно выше, чем в однонаправленном материале, и отношения главных напряжений различны. Влияние термических усадочных напряжений на механические характеристики слоистого композита будет обсуждаться в следующих разделах. Предварительно рассмотрим, как влияют на величину усадочных напряжений свойства ползучести полимерной матрицы. Без учета этих свойств нельзя рассчитать изменения поля напряжений, связанные с режимом охлаждения и дополнительного отверждения.  [c.262]

Наполнители не повышают прочности при разрыве пластмасс и, при удачном сочетании, придают им новые ценные свойства, т. е. в данном случае полимерная матрица служит основой для образования ценных композитов. Таким образом, машиностроителями созданы высокоизносостойкие подшипниковые (металлофторпласт, композит С-1 и др.) и тормозные материалы (рети-накс и др.), данные о которых приведены на с. 225.  [c.233]

В гл. 2 внимание сосредоточено на особенностях поведения композита с хрупкой полимерной матрицей, вызванных появлением и развитием системы микротрещины во всем объеме связующего. Именно эти процессы в основном ответственны за проявление композитами с хрупкой полимерной матрицей неупругих свойств. В главе обосновывается одна из возможных моделей деформирования и разрушения многослойных композитов при плоском напряженном состоянии. Развиваемую модель можно отнести к числу структурно-феноменологических. Феноменологический подход используется для описания поведения однонаправленного композиционного материала (монослоя), структурный — для рассмотрения многослойных композитов, составленных из разноориентированных монослоев. Основные  [c.36]

Впервые ЖКК были созданы на базе холестерических кристаллов в 70-е годы для целей термографии, В водный раствор поливинилового спирта (ПВС) при перемешивании добавляли раствор холестерика для образовании эмульсии. Испарение воды приводило к затвердеванию пленки ПВС, в порах которой формировалась планарная текстура холестерика, Зачерненная с одной стороны пленка ЖКК обладала свойством вьфаженного селективного отражения, которое зависело от температуры, На этой основе в дальнейшем были разработаны термоиндикаторы, В 80-е годы были разработаны композиты с нематиками для применения в электрооптике, ЖКК с нематиками nojiy4eHbi на основе полимерной матрицы, в свободных полостях которой находится нематик,  [c.151]

Композиты обладают комплексом свойств и особенностей, существенно отличающих их от традиционных конструкционных материалов (металлических сплавов) и открывающих широкие возможности как для совершенствования существующих конструкций, так и для разработки новых перспективных конструктивных фор.м и технологических процессов. Композиты, как правило, обладают высокой удельной прочностью и жесткостью, хорошей сопротивляемостью хрупкому разрушению. Кроме того, материалы на основе полимерных матриц отличаются высокой коррозионной стойкостью сочетание этих матриц с органическими или стеклянными волокнами позволяет получить материал, обладающий электроизоляционными свойствами и радиопрозрачностью, а комбинация полимерной или металлической матриц и углеродных волокон обеспечивает электропроводность.  [c.273]


Конструкционные слоистые композиты этого типа обычно изготавливаются на основе полимерной матрицы, армированной непрерывными волокнами. Такой системой, например, является препрег однонаправленного эпоксидного углепластикового монослоя. Обычно слоистый композит содержит набор однонаправленных слоев, спрессованных вместе и отверждшных с образованием слоистой структуры. Глобальные свойства слоистого композита могут проектироваться так, чтобы удовлетворить конкретным конструкционным требованиям путем выбора соответствуюШей последовательности укладки слоев и направлений ориентации волокон в них. Однако эти же переменные параметры слоистых композитов влияют на виды их разрушения, которые принципиально отличаются от металлов.  [c.89]

В главе обсуждаются экспериментальные методы оценки меж-слойного разрушения композитов. Кроме классического метода испытания на сдвиг с помощью короткой балки представлен ряд методов, основанных на подходах линейно-упругой механики разрушения методы двойной консольной балки, расслоения кромки при растяжении, изгиба балки с надрезом на конце, растяжения составного образца с одинарной и двойной накладками, растяжения полосы с косоугольным центральным надрезом. Каждый метод обсуждается с позиций сопротивления материалов. Такого рода подход прцемлем ввиду сложной природы композитов. Кроме того, в главе обсуждается взаимосвязь между основными экспериментальными даш1ыми и конструкционными свойствами композитов, в том числе рассматриваются критерий разрушения смешанного типа и параметрический анализ, включающий одномерную модель расслоения при выпучивании для оценки взаимосвязи между характеристиками материала и его конструкционными свойствами. Рассмотрены также соотношения между основными показателями свойств полимерного связующего и поведением материала матрицы in situ в составе композита.  [c.193]

Этот метод состоит в нагружении трехточечным изгибом балки с отношением пролет/толщина L/h, выбранным так, что межслой-ное разрушение инищ1ируется вдоль срединной линии раньше, чем наступает разрушение от растяжения в нижних наружных слоях балки (рис. 4.1). Именно простота данного метода сделала его очень популярным средством паспортизащш композитов. Хотя в основном трехточечный изгиб использовали для контроля качества изготовленного композита, его применяли и для оценки свойств новых полимерных матриц путем сравнения со свойствами некоторой базовой матрицы, например эпоксидной. Испытание короткой балки применяли, кроме того, для оценки методов отделки и поверхностной обработки волокон, совместимости системы волокно— смола и хрупкости смолы.  [c.195]

Другую группу факторов процесса намотки, влияющих на свойства композита в конструкции изделия, составляют параметры отверждения (полимеризации) Полимерного связующего. Уровень температуры отверждения обычно выбирается в зависимости от типа применяемого связующего таким образом, чтобы обеспечить заданные требования по физико-механическим характеристикам отвержденной матрицы в композите, с одной стороны, с другой — закон изменения температуры в процессе нагрева и охлаждения должен учитывать конкретные условия, вытекающие из разнородности коэффициентов линейного термического расширения материалов заготовки изделия, ее геометрии, теплопроводности применяемой с рмообразующей оснастки, интенсивности теплопритока нагревательных устройств. Вместе с этим технологические режимы отверждения должны обеспечивать бездефектную структуру материала в конструкции с наименьшими затратами энергетических ресурсов.  [c.48]

Пособие посвящено методам испытаний волокнистых композитов первого поколения — на основе полимерной матрицы, армированной обычными и высокомодульными волокнами с однонаправленной, слоистой и трехмерной укладкой арматуры. Можно полагать, что рассмотренные методы окажутся полезными прп изучении механических свойств следующих поколений композитов — с ме- таллической или керамической матрицей.  [c.7]

Даже самсе удачное материаловедческсе или технологическое наименование еще не говорит об особенностях механических испытаний армированных пластиков. Самой важной с этой точки зрения яв.ияется классификация по типу арматуры и ее взаимному расположению (укладке) в полимерной матрице. Главное требование к классификации с точки зрения механики материалов состоит в установлении закона деформирования и зависимости свойств от угловой координаты. Полагая в первом приближении, что армированные пластики следуют закону Гука, все многообразие композитов можно разделить на изотропные и анизотропные материалы.  [c.20]

Для композитов переход к модели сплошной однородной среды значительно сложнее . Особенность строения всех рассмотренных типов волокнистых композитов позволяет найти приемы для преодоления структурной неоднородности. Материалы, армированные во.токнами, обладают регулярным строением и содержат большое число однотипных структурных элементов (волокна, нити, пряди, жгуты, слои ровницы или ткани и др.), которые невозможно, да и нецелесообразно рассматривать в отдельности. Это открывает возможность нового шага в создании модели сплошной среды, названного В. В. Болотиным методом энергетического сглаживания [11, с. 72 ],— армирующие элементы размазываются по объему тела и среда рассматривается как однородная, но наделенная некоторьши новыми свойствами, которые зависят от свойств компонентов системы. В направлениях армирования главную роль играет арматура, а в трансверсальных плоскостях — полимерная матрица. Поэтому идеализированная среда получается, как правило, анизотропной.  [c.24]


Смотреть страницы где упоминается термин Свойства композитов с полимерной матрицей : [c.228]    [c.13]    [c.18]    [c.38]    [c.148]    [c.366]    [c.191]    [c.284]    [c.134]    [c.286]    [c.43]   
Смотреть главы в:

Композиционные материалы  -> Свойства композитов с полимерной матрицей



ПОИСК



Композит



© 2025 Mash-xxl.info Реклама на сайте