Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пассивность и коррозия сталей

ПАССИВНОСТЬ И КОРРОЗИЯ СТАЛЕЙ  [c.10]

Существенным недостатком хромоникелевых так же, как и хромистых, сталей является их подверженность в определенных условиях некоторым видам местной коррозии, связанным с местным нарушением пассивного состояния, в том числе и межкристаллитной коррозии.  [c.421]

Некоторые металлы, например хром, на воздухе пассивны и остаются блестящими годами, в отличие от железа или меди, которые быстро корродируют и тускнеют в короткое время. Показано, что пассивные свойства хрома присущи и железохромистым сплавам при содержании Сг — 12 % и более (такие сплавы известны как нержавеющие стали). Типичные зависимости скорости коррозии, коррозионного потенциала и критической плотности тока от содержания хрома показаны на рис. 5.9—5.11. Заметим, что на рис. 5.11 /крит пассивации Сг — Fe-сплавов при pH = 7 достигает минимального значения (около 2 мкА/см ) при содержании Сг 12 % . Это значение так мало, что коррозионные токи  [c.88]


На рис. 7 показано изменение скорости коррозии низколегированной стали, содержащей 2—2,5% Сг, в дважды дистиллированной воде (pH 5,5—6) при температуре 300 °С при увеличении концентрации растворенного кислорода [19]. При низких концентрациях кислорода скорость коррозии стали возрастает (активное состояние), а затем при концентрации кислорода больше 1,6 г/л сталь переходит в пассивное состояние и скорость коррозии резко снижается. При дальнейшем повышении концентрации скорость коррозии остается постоянной.  [c.29]

С повышением температуры растворов хлоридов снижается устойчивость пассивного состояния нержавеющих сталей при наличии внешних или внутренних механических напряжений возникает наиболее опасный вид коррозии — коррозионное растрескивание. Коррозионное растрескивание является сложным и специфическим процессом, которому подвержено большинство промышленных сплавов. Основными причинами коррозионного растрескивания являются локализация коррозионного процесса на поверхности и наличие достаточно высоких (более 0,2—0,3(То,2) растягивающих механических напряжении.  [c.34]

В растворе хлоридов коррозия стали Х17 язвенная. Введение в раствор сульфатов ионов хлора делает пассивное состояние неустойчивым и соответственно увеличивает скорость коррозии. Катодные процессы протекают на сталях Х18 и Х17 с одинаковой скоростью.  [c.170]

Если для пассивации стали 1Х18Н9 в 50%-ной H2SO4 при 50° С требуется анодная плотность тока г а = 0,25 мА/см , то для поддержания стали в устойчивом пассивном состоянии требуемая плотность тока составляет = 25 мкА/см , т. е. она очень мала. Таким образом, анодная поляризация, переводящая металл в пассивное состояние, может быть использована для защиты металлов (Fe, углеродистых и нержавеющих сталей, титана и его сплавов и др.) от коррозии (табл. 44).  [c.321]

Тонкая обработка поверхности (тонкая шлифовка, полировка), как правило, повышает коррозионную стойкость металлов, облегчая образование более совершенных и однородных пассивных и других защитных пленок, а также повышает предел коррозионной усталости (см. с. 338). Это влияние сказывается главным образом в начальной стадии коррозии, пока не исчезает в результате коррозии металла его исходная поверхность, и имеет большое практическое значение в мягких условиях коррозии, например при атмосферной коррозии металлов. Ниже приведены данные В. О. Кренига о влиянии характера обработки поверхности углеродистой стали (0,8% С) на ее коррозионную стойкость во влажной атмосфере — время до начала коррозии, сут.  [c.326]


С помощью анодной поляризации можно запасснвировать, в частности, легированные стали и поддерживать их пассивное состояние малыми токами в условиях действия серной кислоты. В области потенциалов от —0,1 до +1,2 в в растворах серной кислоты сталь марки Х18Н9Т будет находиться в пассивном состоянии. При более высоких потенциалах может иметь место перепассивация стали и скорость коррозии может увеличиться. Известно, что упомянутая сталь в 30—60%-пой Н2504 совершенно не обладает коррозионной стойкостью, а при анодной поляризации, как это видно из экспериментальных данных, приведенных в табл. 35, наблюдается снижение скорости коррозии стали в сотни и даже тысячи раз.  [c.307]

На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен.  [c.215]

На рис. 3 показана зависимость скорости коррозии стали 20 от кокцен-траанй соляной, серной и азотной кислот. При концентрации растворов 10-Н для азотной кислоты и 18-Н для серной кислоты растворение стали незначительно. С повышением концентрации окислительных кислот на железоуглеродистых сплавах образутотся защитные пассивные пленки. В растворах азотной кислоты, концентрация которой выше 50%, коррозии железоуглеродистых сплавов практически не происходит. При концентрации азотной кислоты  [c.8]

При разведке и разработке континентального шельфа усиленной коррозии подвергаются эстакады, подземные трубопроводы, хранилища, электрические кабели и др. Морская вода—весьма агрессивная среда. Она представляе собой сложный pa iBop многочис -и, л >. ....к й Б шое содержание в ней ионов хлора препятствует установ.чению пассивного состояния для железа, чугуна, низко- и среднелегированных сталей.  [c.13]

Я. М. Колотыркин и Г. М. Флорианович [21] впервые предложили использовать кислород для снижения скорости коррозии сталей в воде при высоких температурах. Авторы работы [22] теоретически обосновали метод кислородной защиты . Они показали, что если в отсутствие кислорода в агрессивнй среде или при недостаточной его концентрации сталь находится в активном состоянии, то перевести ее в пассивное состояние можно, введя в среду кислород повышенной концентрации. Последнее возможно, в частности, путем применения кислорода при повышенном давлении.  [c.46]

Вообще говоря, в морской воде в качестве окислителя могут выступать ионы или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхности металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18).  [c.43]


В кислых водах даже и высоколегированные хромистые и хромоникелевые стали подвергаются активной коррозии, так что необходимо принимать во внимание неравенство (2,48). При не слишком высокой концентрации кислоты и низких температурах в средах с ионами хлора и нитрат-ионами по мере повышения потенциала могут возникать следующие состояния катодная защита— активная коррозия—пассивность—язвенная коррозия— пассивность — транспассивная коррозия. Этот пример четко показывает, насколько различна зависимость различных видов коррозии от потенциала. Информацию, необходимую для осуществления электрохимической защиты, можно получить толыф в результате тщательных лабораторных исследований соответствующей системы.  [c.70]

Катодные металлы. На практике благородные металлы ведут себя в соответствии со своим положением в ряду ЭДС. Однако, как видно из ряда активностей, коррозионный потенциал меди — благородного металла ( сц2 +/си = 0,34 В) в морской воде более отрицателен, чем у высоконикелевых сплавов (например, хастелоя) и нержавеющих сталей при условии, что эти сплавы находятся в пассивном состоянии. В то же время потенциал нержавеющей стали в активном состоянии подобен потенциалу низколегированной стали. Это означает, что нержавеющая сталь, содержащая 18% Сг и 8 /о Ni, в пассивном состоянии вызывает коррозию меди и медных сплавов, а в активном состоянии может сама подвергаться коррозии.  [c.39]

Пассивное состояние исчезает, когда приложенный потенциал достигает более высоких значений, чем фз. Для пассивирующихся металлов важен потенциал фг, который отделяет пассивную зону от активной, так как ниже этого потенциала пассивирование невозможно. Он называется потенциалом активизации или фладе-потенциалом и является в основном функцией pH среды, в которую погружен металл. Поэтому при коррозии с водородной деполяризацией железо и низколегированные стали не могут быть действительно пассивными при pH < 8, поскольку их потенциал коррозии ниже равновесного потенциала катодной реакции. При коррозии с кислородной деполяризацией потенциал железа редко достигает значений более высоких, чем фладе-потенциал, поэтому при коррозии в обычных условиях пассивирование железа практически не играет никакой роли. Потенциал железа может превысить по-  [c.54]

При использовании смесей ингибиторов неокислительного и окислительного типа наблюдается значительный сдвиг электродного потенциала в положительную сторону, что указывает на высокие защитные свойства смесей. Так, НаВОз и NaNOj в отдельности в концентрации до 300 мг/л не влияют на потенциал коррозии стали, но их смеси при такой же концентрации сдвигают потенциал стали в положительную сторону, переводя ее в пассивное состояние.  [c.95]

Многие металлы чувствительны к скорости движения Mop ivoit воды относительно их поверхности. Для таких металлов, как железо и медь, существует критическое значение скорости воды, при превышении которого коррозия становится очень сильной. Пассивные металлы, например титан, некоторые никельхроммолибденовые сплавы и нержавеющие стали имеют тенденцию к повышению коррозионной стойкости при повышенных скоростях движения воды.  [c.22]

Нержавеющие стали в целом находят весьма ограниченное применение в морских условиях. Успешное их применение основывается на контроле окружающей среды с целью поддержания пассивности металла пли же подразумевает защитные меры, препятствующие местной коррозии. Нержавеющие стали обычно стошш в морских атмосферах, где на от крытой незащищенной поверхности сохраняется пассивная пленка. Благоприятны для поддержания пассивности и условия в быстром потоке морской воды. В спокойной морской воде причиной разрушения металла часто является местная коррозия, в частности ппттинг. Наблюдается также коррозионное растрескивание под напряжением. Однако прп правильном выборе типа сплава, а также режимов упрочнения п старения высокопрочные нержавеющие стали стойки в морских атмосферах.  [c.57]

В лаборатории фирмы Тпсо (Райтсвилл-Бич, Сев. Каролина) в течение 5 лет проводились исследования обрастания и коррозии в морской воде [1,74]. Сильно корродирующие материалы, такие как сталь, подвержена и сильному обрастанию, но этот слой легко удаляется, а периодически просто отваливается вместе с продуктами коррозии. Пассивные металлы, например алюминий, также быстро обрастают, но в этом случае биологический слой прочно сцеплен с поверхностью металла. а щелевая коррозия под этим слоем приводит к питтингу. Токсичные металлы, такие как бериллий и свинец, также подвержены обрастанию. Медные сплавы обладают стойкостью к обрастанию, что объясняется образованием на их поверхности продуктов коррозии, содержащих закись меди, токсичную для морских организмов. Часто образующийся на медных сплавах гидроксихлорид меди не токсичен и в этом случае обрастание происходит, но легко поддается очистке. Чистая медь и сплавы 90—10 Си —Ni и 70—30 Си — Ni в равной степени стойки к обрастанию. Присутствие медных сплавов не защищает от обрастания соседние детали конструкций, изготовленные из других материалов. Это  [c.185]

По характеру разрушения коррозия штоков может быть как общей, так и местной (точечная или питтинг). Образование точечной коррозии связано с нарушением пассивного состояния стали, легко активизируемой хлор-ионами, находящимися в значитетьном количестве в технической воде и набивке, содержащей асбест. Устойчивое пассивное состояние нержавеющих сталей в растворах хлоридов зависит от состава сплава, его структуры, а также от состава электролита.  [c.71]


Как указывалось выше, в.нейтральных средах при комнатной и критической температурах анодные поляризационные кривые стали 1Х18Н9Т не имеют активной области. При потенциалах, отстоящих от стационарного значения на несколько десятых вольта, нержавеющая аустенитная сталь растворяется в пассивном состоянии. В связи с этим в дистиллированной воде, как при комнатной, так и при высокой температуре, контакт низколегированных сталей, алюминиевых сплавов и хромистых сталей со сталью 1Х18Н9Т практически скорости коррозии ее не изменяет. Во всех этих парах сталь 1Х18Н9Т является катодом.  [c.122]

При комнатной температуре введение в воду нитратов в количестве 0,001 Н и карбонатов до насыщения не изменило кинетики анодного и катодного процессов. В соответствии с этим скорость коррозии стали 1X18Н9Т в этих средах близка к скорости ее в дистиллированной воде (см. табл. 111-6). Величины стационарных потенциалов свидетельствуют о том, что сталь 1Х18Н9Т в указанных растворах находится в пассивном состоянии. Увеличение скорости коррозии аустенитной нержавеющей стали при температуре 300° С в воде, содержащей карбонаты, вероятно, может быть связано с диссоциацией карбонатов при высокой температуре, образованием углекислого газа и подкислением среды.  [c.123]

Между концентрацией кислорода в водной среде лри содержании его до 4 мг/кг и скоростью коррозии существует линейная зависимость (рис. 3-2). При концентрации кислорода более 4 мг/кг проявляется его пассивирующее действие. Наступление пассивного состояния металла характеризуется резким уменьшением скорости коррозии и значительным смещением потенциала металла в положительную сторону — для железа от значений 0,2—0,3 В к значениям 0,5—2,5 В. Применительно к стали явление пассивации выражается в первую очередь в адсарбции кислорода ее поверхностью с последующим образованием окисных (плеток. Это приводит к тому, что с ростом концентрации КисЛ0 рода в 5 водной среде свыше 4 мг/кг скорость коррозии стали  [c.53]

Фосфатированию для защиты от коррозии подвергают в основном детали, выполненные из углеродистых, малоуглеродистых и малолегированных сталей. Фосфатирование высоколегированных сталей затруднено вследствие образования на них прочной пассивной пленки, препятствующей получению сплошной и прочной фосфатной пленки,  [c.92]

На рис. 6.3. показана зависимость скорости коррозии стали 20 от концентраций соляной, серной и азотной кислот. При концентрации растворов 10 н. для азотной кислоты и 18 и. для серной кислоты растворение стали незначительно. С повышением концентрации окислительных кислот на железоуглеродистых сплавах образуются защитные пассивные пленки, В растворах азотной кислоты, концен1рация которой выше 50%, коррозии железоуглеродистых сплавов практически не происходит. При концентрации азотной кислоты 94... 100% железоуглеродистые сплавы вследствие явления перепассивации вновь сильно разрушаются.  [c.76]

Первая глава посвящена аналитическому обзору коррозионномеханического поведения и коррозионной стойкости аустенитных хромоникелевых сталей типа 18-10 и их сварных соединений в агрессивных средах нефтегазовой, нефтеперерабатывающей промышленности, отраслях топливно-энергетического комплекса. Рассмотрены взаимосвязь долговечности изделий из таких сталей в различных средах и условиях эксплуатации с их физико-механическими свойствами и структурным состоянием особенности эксплуатации изделий с ГМО из этих сталей и характер их разрушения, связанного в основном с потерей пассивности и коррозионно-усталостным нагружением в условиях эксплуатации. Разрушение ГМО, как правило, происходит по вершине гофра в околошовной зоне сварного соединения в местах питтинговой коррозии, обусловленной наличием активирующих хлорид-ионов в рабочих средах, а также частичной потерей пассивности, многократно усиленной анодной поляризацией блуждающими токами.  [c.7]

На рис. 2 представлены потенциостатические поляризационные кривые стали 12X18Н10 в 3%-м хлориде натрия со свободным и затрудненным доступом кислорода (моделирование щелевой коррозии). Как видно из рис.2, при затрудненном доступе кислорода исследуемая сталь теряет пассивность и ведет себя как активная (что характерно для углеродистых и низколегированных сталей). При этом плотность тока саморастворения увеличивается в 2-2,5 раза, а при поляризации - на порядок и более.  [c.10]

Новшеством является применение палладия в качестве добавки для повышения пассивности нержавеющей стали [87] и тнтаиа [2 . Добавки платины и палладия в количестве 0,1—1,0% заметно повышают стойкость нержавеющей стали марки 18-9 и высокохромистой стали против коррозии серной кислотой. Недавно Стерн 12] сообщил, что при добавлении к титану всего 0,1% палладия или платины этот металл становится устойчивым против действия горячих растворов соляной и серной кислот. Титан весьма устойчив против действия окислительных кислот, но он растворяется в кислотах, обладающих восстановительными свойствами, наириыер в соляной кислоте. Благородный металл, по-видимому, действует как катод в гальванической ванне и, превращая сталь или титан в анодный металл, благоприятствует образованию иа этих металлах защитной окисной пленки.  [c.505]


Смотреть страницы где упоминается термин Пассивность и коррозия сталей : [c.219]    [c.65]    [c.161]    [c.78]    [c.13]    [c.14]    [c.76]    [c.19]    [c.19]    [c.37]    [c.145]    [c.40]    [c.58]    [c.114]    [c.114]    [c.123]    [c.169]    [c.81]    [c.199]    [c.199]   
Смотреть главы в:

Коррозионностойкие стали и сплавы  -> Пассивность и коррозия сталей



ПОИСК



Пассивность

Сталь коррозия



© 2025 Mash-xxl.info Реклама на сайте