Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислородная защита

Кислородная защита является разновидностью электрохимической защиты, при которой смещение потенциала защищаемой металлоконструкции в положительную сторону осуществляется путем насыщения коррозионной среды кислородом. В результате этого скорость катодного процесса настолько возрастает, что становится возможным перевод стали из активного в пассивное состояние. Поскольку величина критиче-  [c.296]


В каких условиях применяется кислородная защита Сущность этого метода.  [c.308]

Кислородная защита 296 Кислородная деполяризация 71,90  [c.316]

Разновидностью электрохимической защиты является кислородная защита, при которой за счет насыщения среды кислородом можно перевести металл конструкции в пассивное состояние.  [c.73]

Для защиты металлических конструкций от коррозии с кислородной деполяризацией в нейтральных электролитах (пресной и морской воде, водных растворах солей, грунтах) существуют следующие методы  [c.247]

Из п. 3 табл. 41 следует большая эффективность электрохимической катодной защиты при диффузионном контроле катодного процесса (например, кислородной деполяризации в неподвижных нейтральных электролитах) и малая ее эффективность при коррозии металлов в кислотах (малые значения Р ) и коррозии их в пассивном состоянии (большие значения Р ).  [c.295]

Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом — разрезаемым металлом и катодом — плазменной горелкой. Стабилизация и сжатие токового канала дуги, повышающее ее температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующих газов (Аг, N2, Hj, NHJ и их смесей. Для интенсификации резки металлов используется химически активная плазма. Например, при резке струей плазмы, кислород, окисляя металл, дает дополнительный энергетический вклад в процесс резки. Плазменная дуга режет коррозионно-стойкие и хромоникелевые стали, медь, алюминий и другие металлы и сплавы, не поддающиеся кислородной резке. Высокая производительность плазменной резки позволяет применять ее в поточных непрерывных производственных процессах. Нанесение покрытий (напыление) производятся для защиты деталей, работающих при высоких температурах, в агрессивных средах или подвергающихся интенсивному механическому воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка (или проволоки) в плазменную струю, в которой он плавится, распыляется со скоростью - 100—200 м/с в виде мелких частиц (20— 100 мкм) на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам.  [c.291]

Железо корродирует в морской воде со скоростью 2,5 г/(м -сут). Рассчитайте минимальную начальную плотность тока (в А/м ), необходимую для полной катодной защиты принять, что коррозия идет с кислородной деполяризацией.  [c.393]


При сварке титана и алюминия — металлов очень высокой химической активности — раскисление осаждением невозможно, поэтому их сварку осуществляют с внешней защитой от окружающей среды — в инертных газах, в вакууме или под флюсами, не содержащими кислородных соединений.  [c.330]

Механизм защиты сплавов от окисления атмосферным кислородом технологическими покрытиями и жаростойкими эмалями весьма сложен. Он зависит от состава покрытия, сплава, особенностей их взаимодействия, температуры, времени и других условий нагрева. Решающее значение имеет образование кислородных вакансий в покрытиях и их заполнение кислородом из окружающей среды.  [c.177]

ДЛЯ ЗАЩИТЫ КИСЛОРОДНОГО ОБОРУДОВАНИЯ  [c.117]

Идея метода кислородной пассивации сводится к следующему. Чтобы резко затормозить коррозию металла, необходимо обеспечить смещение его коррозионного потенциала до значений, которые положительнее потенциала пассивации. Это можно сделать либо пропуская через металл анодный ток (так называемая анодная защита), либо вводя в раствор окислитель в необходимой концентрации. При этом для практики принци-  [c.46]

Индивидуальные адсорбционные ингибиторы не эффективны в условиях коррозии с кислородной и смешанной деполяризацией. Более того, из-за экранирования поверхности процесс коррозии с кислородной деполяризацией может оказаться сосредоточенным (благодаря эффекту бокового подвода) на относительно небольшой ее доле. Общая коррозия в присутствии таких ингибиторов в условиях преобладания кислородной деполяризации способна трансформироваться в локальную, более опасную. Применение этих ингибиторов, как и любых мер защиты металлов от коррозии, требует ясного представления о природе коррозионного процесса и об условиях его протекания, а также о конкретных требованиях к конечным результатам защиты.  [c.37]

При этом для коррозии с кислородной деполяризацией справедливо соотношение /о>0к, так что для этой реакции в области потенциалов, представляющей интерес, имеется некоторый предельный ток, который и соответствует скорости коррозии при стационарном потенциале и защитному току. Для выделения водорода соотношение получается обратным /о< СОк. Эта реакция идет только при более отрицательных потенциалах, чем защитный потенциал, и следует прямой Тафеля, ход которой при логарифмическом изображении кривой I(U) характеризуется заметным отклонением при переходе от предельного диффузионного тока кислорода к выделению водорода. Поляризация на этом участке кривой в таком случае показывает, что защитный ток больше предельного диффузионного тока кислорода и, следовательно, согласно неравенству (2.40), обеспечивается катодная защита.  [c.103]

Для полиэтиленового покрытия толщиной 1 мм с коэффициентом P=2-10 см -с- -МПа- при Др=0,02 МПа подсчет дает w = =5 мкм-год-. Таким образом, коррозией с кислородной деполяризацией можно практически пренебречь. Эта максимальная оценка сделана исключительно по показателям покрытия в предположении о беспрепятственном окислении поверхности металла — независимо от сцепления покрытия с металлом или существования пустот. Скорость коррозии может быть выше оцененной по формуле (5.18) только в том случае, если кислород имеет непосредственный доступ к повреждениям в покрытии и порам. Однако и в этом случае скорость коррозии ввиду медленного процесса диффузии в воде будет весьма низкой, причем катодная защита и при отслоившемся покрытии более чем компенсирует диффузионный поток кислорода [см. пояснения к формуле (2.46)]. Опасность  [c.157]

Сопротивление усталости металлов, особенно цветных, можно повысить путем создания сжимающих напряжений в поверхностных слоях. Дробеструйная обработка поверхности металла, предшествующая напылению металла, создает наклеп на на его поверхности, вследствие чего может увеличиться коррозионно-усталостная стойкость. Нанесение соответствующего протекторного металлизационного покрытия также может улучшить сопротивление действию коррозии там, где существуют условия, способствующие коррозионно-усталостному разрушению. При фретинг-коррозии концентрационные кислородные элементы, образуемые в мелких трещинах, и металлическая пудра, появляющаяся вследствие истирания при незначительном взаимном перемещении узлов соединения, вызывают локальную коррозию. Металлизационное покрытие создает более высокие антифрикционные свойства, снижающие возможность относительного сдвига, и обеспечивает протекторную защиту. Оба эти фактора способствуют уменьшению разрушения.  [c.82]


Защитная плотность тока в изолированных магистральных газопроводах не может служить надежным критерием защиты вследствие неизвестного распределения повреждений изоляции газопроводов, характеризующих фактическую поверхность металла, контактирующую с грунтом. Даже в неизолированных трубах защитная плотность тока, вычисленная по геометрическим размерам сооружения, является фиктивной, так как в этом случае не учитываются покрытые окалиной, пассивные и. другие участки поверхности, не участвующие в кислородной деполяризации.  [c.67]

Методы защиты от коррозии с водородной поляризацией аналогичны рассмотренным для случая коррозии с кислородной деполяризацией.  [c.22]

Анализ металла шва показывает, что насыщение азотом зависит в основном от степени совершенства защиты расплавленного металла, а насыщение кислородом и образование кислородных химических соединений зависят также от состава и химической активности (раскис-  [c.306]

Нейтрализующие амины по понятным причинам не защищают металл от действия кислорода. При высоких концентрациях углекислоты в паре защита от углекислотной и кислородной коррозии конденсатопроводов отопительных котельных (обычно низкого давления) достигается применением аминов с длинной боковой цепью (содержание в составе молекулы не менее 12—18 атомов углерода), которые называют пленкообразующими. Эти амины адсорбируются поверхностью металла и делают ее гидрофобной, т. е. несмачиваемой водой, чем и обеспечивается защита металла от коррозии (прекращение доступа электролита). Дозировка этих аминов не зависит от содержания СО2 и составляет обычно 2 мг/кг пара. Пленкообразующие амины не растворяются в воде и дозируются в виде эмульсии в барабан котла или непосредственно в паропровод. Часто применяют не сами амины, а их ацетаты (уксуснокислые соли), обладающие лучшей растворимостью и образующие особенно стойкие эмульсии с водой. Вводятся эти амины обычно насосами-дозаторами. Во время первого периода обработки применяют повышенную дозировку амина, пока не образуется адсорбционная пленка на поверхности металла затем дозировку снижают и расходуют амин только на поддержание указанной защитной пленки.  [c.400]

Стояночная коррозия (вид кислородной коррозии) происходит при отсутствии защиты металла котельного оборудования от воздействия влаги и кислорода воздуха во время нахождения в резерве или простое. Методы предотвращения стояночной коррозии основаны на следующих принципах 1) исключения возможности доступа воздуха к металлу неработающего оборудования 2) обеспечения сухости поверхности металла и возможно более низкой влажности воздуха в агрегате 3) создания коррозийно-защитного состава воды или пленки влаги, соприкасающихся с поверхностью металла путем применения замедлителей коррозии.  [c.84]

Переходя к ознакомлению обучаемых со средствами индивидуальной защиты при работе в загазованной Среде и обучению правилам пользования ими, преподаватель показывает в натуре или на рисунке, применяемые в газовом хозяйстве шланговые и кислородные изолирующие противогазы КИП-5, объясняет устройство,  [c.192]

Основным преимуществом азотной консервации является возможность замены отдельных труб (даже нескольких одновременно) без нарушения условий защиты металла от коррозии. При любом вскрытии законсервированного котла необходима усиленная вентиляция рабочего места, поскольку увеличение содержания азота в воздухе вызывает у людей кислородное голодание.  [c.102]

При кратковременных работах в чрезвычайных случаях (аварийные ситуации и т.п.), когда невозможно уменьшить вредные выделения до допустимых уровней, необходимо пользоваться средствами индивидуальной защиты — респираторами, противогазами, кислородными изолирующими приборами и др. и принимать срочные меры по нормализации состава воздуха рабочей зоны.  [c.407]

Многие аппараты и оборудование, поверхность которых контактирует с речной водой, могут быть защищены от кислородной коррозии методом катодной защиты.  [c.101]

Я. М. Колотыркин и Г. М. Флорианович [21] впервые предложили использовать кислород для снижения скорости коррозии сталей в воде при высоких температурах. Авторы работы [22] теоретически обосновали метод кислородной защиты . Они показали, что если в отсутствие кислорода в агрессивнй среде или при недостаточной его концентрации сталь находится в активном состоянии, то перевести ее в пассивное состояние можно, введя в среду кислород повышенной концентрации. Последнее возможно, в частности, путем применения кислорода при повышенном давлении.  [c.46]

Рассмотрены основные закономерности процесса кислородной и углекислотной коррозии оборудования систем охлаждения и теплоснабжения производственных объектов мета ллургической промышленности при использовании воды природных источников, химически очищенной и обессоленной воды, а также пара котельных и ТЭЦ. Изложены причины появления коррозии. Описаны современные способы противокоррозионной защиты металла при эксплуатации оборудования и при его простаивании, а также способы удаления продуктов коррозии.  [c.2]

В Основных направлениях экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года разработана широкая программа энергоснабжения нашей страны. Она требует повышенного внимания к работе технологического оборудования, изготовленного из стали и других металлов и сплавов, которые контактируют с водой и паром и могут подвергаться коррозии. Статистика показывает, что большинство отказов в работе такого оборудования связано с протеканием кислородной и углекислотной коррозии при его эксплуатации и простаивании. По этой причине часто возникают перебои в тепло- и водоснабжении и аварийные ситуации на производственных предприятиях, особенно в металлургической промышленности. Настоящая книга — это руководство по технике противокоррозионной защиты установок водо- и теплоснабжения. Она написана на основе передового отечественного и зарубежного опыта. Мы старались как можно более полно рассмотреть причины и факторы, обусловливающие протекание коррозии, чтобы обоснованно рекомендовать практические мероприятия по ее предупреждению.  [c.4]


Индивидуальные адсорбционные ингибиторы характеризуются преобладанием двойнослойного (энергетического) эффекта над блокировочным (механическим или экранирующим). Они образуют на поверхности металла неупорядоченный ажурный слой с чередованием в нем отдельных частиц ингибитора и кластеров. Такой несплошной мономолекулярный слой почти не тормозит процессы, ограничиваемые диффузией (например процесс восстановления кислорода) и, кроме того, не создает препятствия для сцепления органических и неорганических покрытий с металлической поверхностью. Индивидуальные адсорбционные ингибиторы (например катионного типа) целесообразно применять для защиты металлов от коррозии, протекающей с водородной деполяризацией, особенно в тех случаях, когда металлическое изделие должно в последующем проходить нанесение гальванических покрытий, эмалирование и т. д. Способность таких ингибиторов избирательно подавлять реакцию выделения водорода и повышать долю кислородной деполяризации делает их пригодными для защиты от коррозии тех металлических изделий, которые затем будут подвергаться разного рода механическим воздействиям и нагрузкам.  [c.37]

Термический метод используют для защиты от обрастателей морских водоводов, когда имеются отходы тепловой энергии. При защите элементов конструкций гидроэлектростанций водой, нагретой до 70...80°С, мидии погибают в течение 10... 15 мин. Возможно использование метода для защиты водопровода и конденсаторов периодической промывкой водой, нагретой до 40...45°С. Пониженные температуры (вымораживание) и кислородное ограничение ингибируют процесс обрастаний, но для их реализации требуются соответствующие условия и аппаратура.  [c.93]

В настоящее время в качестве пленкообразующих применяются соединения из группы аминов октадециламин 18H37NH2 и втиленин (смесь аминов жирных кислот с i7— ai). Оба соединения применяют для защиты от кислородной и углекислотной коррозии как теплоиспользующей аппаратуры, так и трубопроводов, служащих для перекачки производственного конденсата.  [c.243]

Сернистый ангидрид вводится в воду под собственным давление.м из баллонов или цистерн (подогреваемых до сю40° С), что делает излишним защиту его от контакта с воздухом. Преимуществом 80а по сравнению с сульфитом натрия является снижение щелочности воды. Иногда сернистым газом пользуются для нейтрализации (снижения pH) сильнощелочной известкованной воды перед органическими катионитами. При этом одновременно защищают катионит от разрушения, а металл оборудования от кислородной коррозии.  [c.397]

Для защиты органов дыхания в аварийных ситуациях применяют респираторы, противогазы, кислородные изолирующие приборы и другие средства защиты. Среди многих вредных веществ особое место занимают сильнодействующие ядовитые вещества (СДЯВ). К ним относятся мышьяк, соли синильной кислоты, цпанистые препараты, алкалоиды и другие вещества. Хранение СДЯВ должно быть организовано в отдельных закрытых помещениях или складах, расположенных вдали от жилых и общественных зданий и водоемов [27].  [c.503]

Радиочувствительность делящихся клеток зависит от миогих факторов и может быть искусственно увеличена (сенсибилизация) или уменьшена (защита) соответственно Dg уменьшается или увеличивается. Наиб, эффективным естеств. сенсибилизатором является кислород в его отсутствие поражение различных биол. объектов (макромолекул, клеток, организмов в целом), как правило, ослабляется (кислородный эффект). При этом Df, для клеток увеличивается в 3 раза. С ростом линейной плотности ионизации радиочувствительность клеток и тканей возрастает.  [c.199]

В кипящем экономайзере при малой скорости воды возможно расслоение пароводяной смеси (см. 9-1). Защита от кислородной коррозии и расслоения достигается выбором соответствующей скорости воды. Массовая скорость воды на входе в экономайзер должна быть не менее 400 кг1м -сек. При этом внутренний коэффициент теплоотдачи достаточно велик (02 — 3 000- -4 000 вт/м град), чем обеспечивается надежное охлаждение змеевиков.  [c.149]

Газопламенную сварку алюминия ведут кислородно-ацетиленовым пламенем при соотношении O2/G2H2 = 1,1...1,2. По отношению к алюминию все зоны пламени имеют окислительный характер. Для защиты от окисления и для удаления окисной пленки применяют флюсы на основе хлоридов и фторидов натрия, калия и лития, например флюс АФ-4А. Флюс разводят в воде непосредственно перед сваркой, а затем наносят в виде пасты на кромки детали и на конец присадочного прутка. Мощность пламени (л/ч) выбирают в зависимости от толщины S (мм) свариваемого металла М = (100... 150)5.  [c.198]

Типовая схема централизованного ггВопитання постов показана на рис. 1.3. Кислород поступает к стационарным рабочим постам по газопроводу 5 от соответствующего источника питания (кислородной установки, газификатора или перепускной рампы). Соответственно ацетилен поступает по газопроводу 10 от ацетиленовой установки, стационарного генератора или перепускной рампы. В случае ее использования ацетилен подается непосредственно в цеховой газопровод. При применении других источников питания ацетиленом на входе ацетиленопровода в цех устанавливается центральный (групповой) предохранительный жидкостный или сухой затвор /, предназначенный для защиты межцехового газопровода от проникновения в него обратного удара пламени. Тип затвора выбирают в зависимости от давления и расхода ацетилена. Непосредственно за затвором (по ходу газа) на вводе газа в цех устанавливается шкаф 2 ввода ацетилена с запорным вентилем и манометром, которые должны располагаться в доступном и удобном месте. Запорные вентили 6 устанавливают также на ответвлениях ацетиленопроводов, предназначенных для подачи ацетилена на отдельные участки цеха.  [c.9]

Другую проблему использования оксидов составляет диффузия кислорода при высоких температурах. Высокая проницаемость кислорода делает указанные системы неэффективными для применения в качестве кислородных барьеров. Оксид кремния имеет самую низкую проницаемость кислорода и является лучшим материалом для использования в гачестве барьера. В связи с этим для создания защиты композита при температурах выше 1800 °С применяют многослойные покрытия наружный слой - жаростойкий оксид, внутренний слой - из стекловидного SiOj. Повышение температуры использования УУКМ связано с разработкой многокомпонентных покрытий, в состав которых входят дибо-рит гафния, диоксид гафния и иридий. Эти вещества имеют очень высокую температуру плавления  [c.239]


Смотреть страницы где упоминается термин Кислородная защита : [c.47]    [c.296]    [c.296]    [c.401]    [c.168]    [c.440]    [c.128]    [c.114]    [c.39]    [c.234]    [c.240]   
Смотреть главы в:

Коррозия и защита от коррозии  -> Кислородная защита


Коррозия и защита от коррозии (2002) -- [ c.296 ]



ПОИСК



I кислородные

Защита от коррозии кислородная

Сталь углеродистые, защита от кислородной коррозии



© 2025 Mash-xxl.info Реклама на сайте