Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионное поведение металлов в различных средах

КОРРОЗИОННОЕ ПОВЕДЕНИЕ МЕТАЛЛОВ В РАЗЛИЧНЫХ СРЕДАХ 51  [c.51]

Коррозионное поведение металлов в различных средах  [c.51]

Работы Ю. Н. Михайловского позволили обосновать физико-механическую модель, связывающую скорость атмосферной коррозии с параметрами окружающей среды. С помощью этой модели можно с достаточной степенью точности прогнозировать коррозионное поведение металлов в различных климатических зонах.  [c.119]


В течение многих лет предпринимались попытки найти единое ускоренное коррозионное испытание , которое могло бы служить всем или, по крайней мере, большей части перечисленных целей. Для разработки ускоренного испытания проводились испытания в брызгах раствора соли, испытания в атмосферной камере, испытания для стали при полном погружении в растворы кислот и многие другие. Представлялось заманчивым найти такое ускоренное испытание, которое давало бы за короткое время характеристику поведения различных материалов, пригодную для оценки их стойкости во время службы. Однако все эти попытки потерпели неудачу и прежде всего потому, что для ускорения процесса агрессивность среды должна быть увеличена, а это изменяет ее природу. Возможно, чго более важной причиной является большое различие в поведении металлов в разных средах и условиях, вследствие чего никакое единое или даже несколько ускоренных  [c.995]

Существенную помощь в решении проблемы коррозии может оказать прогнозирование коррозионного поведения металлов на длительные сроки (до 100 лет) на основе сравнительно кратковременных испытаний, а также использование справочных данных. Однако сложность и многообразие форм коррозионных процессов служат серьезным препятствием для научно обоснованного прогнозирования коррозии металлов. Справочные данные, как правило, относятся к технически чистым металлам и стандартным сплавам в простых (чистых) коррозионных средах. Создание справочников, учитывающих всевозможные сочетания металлов в конструкции, а также все многообразие коррозионных сред, внутренних и внешних факторов, оказывающих влияние на коррозионный процесс, не представляется реальным. Для того чтобы выбор металлических материалов для сложных конструкций, работающих в различных  [c.5]

Титан и его сплавы отличаются высокой коррозионной стойкостью в ряде агрессивных неорганических и органических сред. В литературе [1—3] имеются многочисленные данные о коррозионном поведении различных металлов в растворах галоидов в органических средах. Есть также указания [4] на высокую агрессивность по отношению к титану растворов брома в метиловом спирте, а также на то, что анодирование титана значительно повышает его коррозионную стойкость в этих растворах. Однако подробных сведений о коррозионном поведении титана и механизме коррозионных процессов в галоидных растворах спиртов нет. Исследование коррозионной стойкости титана в органических средах в присутствии галоидов с практической стороны представляет большой интерес для выяснения возможности применения титана в качестве конструкционного материала в ряде условий органического синтеза.  [c.164]


Обстоятельно характеризуется коррозионное поведение металлов и сплавов в различных средах — кислотах, щелочах, атмосфере, грунте, морской воде и пр.  [c.4]

Большинство опубликованных данных по контактной коррозии касается скорее обычных металлических соединений, чем систем биметаллических покрытий, и важно иметь в виду, что их коррозионное поведение может быть различным. Несмотря на это, общие указания могут быть получены на основе данных для обычных контактных систем, работающих в соответствующей среде. Имеются данные [11] по различным комбинациям металлов, обычно используе-  [c.395]

В книге на современном научном уровне рассматривается коррозионная стойкость алюминия и его сплавов в различных средах. Приводятся данные по влиянию состава среды, металла, условий эксплуатации, термической обработки на коррозионное и электрохимическое поведение алюминия и его сплавов. Рассматриваются различные способы защиты алюминия от коррозии.  [c.2]

При исследовании контактной коррозии металлов и сплавов применяют различные виды образцов и способы их контактирования. Испытания иа контактную коррозию проводят в тех же средах, в которых исследуют коррозионное поведение образцов без контакта. Коррозию оценивают при визуальном осмотре и по результатам измерения зоны контактного действия и глубины поражений вокруг контактов.  [c.91]

Предлагаемый нами справочник состоит из нескольких разделов. Вначале изложены основные представления о коррозии металлов, действии ингибиторов и электрохимической защите металлических сооружений и конструкций. Приведены таблицы составов сталей различных марок и сплавов, выпускаемых в ряде промышленно развитых стран, а также торговые названия металлических и неметаллических материалов. Отдельно рассмотрены коррозионные и эксплуатационные характеристики широко применяемых металлов и потенциалы их реакций. Основная часть справочника посвящена коррозионному поведению металлических и неметаллических материалов в некоторых наиболее часто встречающихся коррозионных средах. Для удобства пользования справочником названия этих сред даны в алфавитном порядке.  [c.7]

Коррозионное поведение углеродистой стали в четырех средах, описанных выше (три эксперимента в условиях постоянного погружения и один при переменном погружении в зоне прилива), весьма различно. На рис. 121 показаны зависимости средней глубины коррозии от времени экспозиции для трех партий образцов, испытывавшихся в подводных условиях. Все пластины, погруженные V острова Наос, в течение первого года экспозиции полностью обросли твердыми морскими организмами, в основном корковыми мшанками. Осмотр последующих образцов показал, что на металле образовалось три различных слоя. Сплошной верхний слой состоял из морских организмов, участвовавших в обрастании, средний слой представлял собой твердый коррозионный осадок, а непосредственно на металле располагался сплошной слой мягкого черного иро-ду1<та коррозии, богатого сульфидами.  [c.442]

Для того чтобы выявить специфическое влияние анионов, входящих в состав ингибиторов, защищающих металл благодаря образованию труднорастворимых соединений, изучали в их присутствии анодное поведение стали в буферном электролите при постоянном значении pH. Таким образом исключалось возможное влияние pH при введении этих щелочных ингибиторов в коррозионную среду (рис. 2,16). Как нетрудно заметить, при одинаковом значении pH и одинаковой мольной концентрации фосфата и силиката. их влияние на анодное растворение стали различно фосфат переводит сталь в пассивное состояние, а в присутствии силиката сталь остается в широкой области потенциалов в активном состоянии. Эти результаты иллюстрируют специфическое влияние анионов и указывают на то, что действие ингибиторов щелочного характера обусловлено не только изменением pH.  [c.49]

Среди применяемых средств защиты металлов от коррозии защитные покрытия получили наибольшее распространение, но их выбор и применение в каждом конкретном случае далеко не всегда научно обоснованы. Это объясняется многокомпонентно-стью системы металл-покрытие и влиянием различных факторов на поведение этой системы. Надо отметить, что электрохимический характер коррозии оборудования в отрасли является преобладающим в связи с присутствием воды в рабочих средах. Коррозионный процесс под покрытием — металлическим или лакокрасочным — также является электрохимическим по своей природе. Поэтому современные исследования направлены на изучение не только физико-химических процессов, происходящих в материале покрытий при контакте их с жидкостями и газами, но и электрохимических процессов в системах "металл-покрытие-электролит".  [c.6]


Основная часть справочника посвящена коррозионному поведению металлических и неметаллических материалов в различных средах. Для каждой коррозионной среды дается характеристика коррозионного поведения материалов и область их применения. Довольно широкий охват коррозионных сред, металлических материалов, условий их эксплуатации и областей применения в сочетании с изложением основных закономерностей коррозионных процессов позволит специалистам сделать правильный выбор металла или защитного покрытия при создании новой техники. Справочник будет также полезен для спё-циалистов, занимающихся изучением коррозионных процессов.  [c.6]

К тугоплавким металлам, рассматриваемым здесь, относятся тантал, цирконий, ниобий, молибден, вольфрам, ванадий, гафний и хром. Данные о Коррозионном поведении этих металлов в морских средах сравнительно немногочисленны. Однако известно, что все эти металлы обладают великолепной стойкостью в различных агрессивных условиях. В химических свойствах тугоплавких металлов много общего. Наиболее важным является способность образовывать на поверхности тонкую плотную пассивную окисиую пленку. Именно с этим свойством связана высокая (от хорошей до отличной) стойкость тугоплавких металлов в солевых средах. При экспозиции в океане все эти металлы подвержены биологическому обрастанию, однако большинство из них достаточно пассивны и сохраняют стойкость дал4е прн наличии на поверхности отложений.  [c.160]

Поскольку скорость катодного процесса стали 2X13 остается постоянной в различных средах, характер анодного процесса будет определять коррозионное поведение металла. Стационарный потенциал стали 2X13 в дистиллированной воде, растворах сульфата нат-  [c.168]

Для изучения поведения металлов в присутствии различного типа коррозионно-агрессивных сред в условиях действия высоких температур и давлений был разработан ампульный метод , в котором в качестве индикаторов коррозии используются микрообразцы из стали испытуемых марок. Метод был апробирован для стали марки 12ХМФ, широко применяемой для изготовления экранных труб котлов высокого давления.  [c.281]

Эффекгивйость коррозионных исследований в значительной степени зависит от правильности обработки экспериментального материала. Независимо от выбранного показателя коррозии, наиболее полное представление о коррозионном поведении металла дает зависимость коррозии от времени испытаний, часто выражаемая кривыми К — i, которая и является основной коррозионной характеристикой. Сравнивать коррозионную стойкость металлов или агрессивность различных сред можно только на основании анализа этих кривых даже в том случае, когда они в первом приближении имеют одинаковый характер. Справед-  [c.41]

При исследовании коррозионного поведения металлов и сплавов в жидких средах часто возникает задача определения в растворе весьма малых количеств продуктов растворения. С такой задачей исследователь сталкивается, например, при измерении скоростей растворения коррозионно-стойких металлов и сплавов, особенно при потенциалах пассивной области или при очень отрицательных потенциалах, при исследовании кинетики начальных стадий растворения, при оценке коррозионной стойкости анодов из благородных металлов в различных условиях электролиза, при определении скорости растворения микропримесей и в ряде других случаев. Чувствительность обычных, традиционных методов, используемых при таких коррозионных испытаниях, как определение весовых потерь или колориметрическое определение продуктов коррозии в растворе, часто недостаточна для проведения соответствующих измерений. В этих случаях весьма эффективным может оказаться применение радиохимического метода, сущность которого состоит в следующем. В исследуемый образец вводятся радиоизотопы составляющих его элементов. Затем образец подвергается коррозионному испытанию,  [c.93]

В сборнике рассматриваются закономерности коррозионного поведения металлов и методы защиты их от коррозии различными покрытиями. Также расошатриваются факторы, влияюще на коррозию, механизм ингибирования, особенности электрохимического поведения сплавов титана в различных средах, принципы конструирования металлического оборудования в коррозионностойком исполнении в электрохимических производствах.  [c.2]

С точки зрения термодинамики титан является очень неустойчивым металлом (его нормальный потенциал равен —1,63 в), а высокая коррозионная устойчивость титана в большинстве химических сред объясняется образованием на его поверхности заш,итных окисных пленок, исключаюш их непосредственный контакт металла с электролитом. Вследствие этого было интересно исследовать электрохимическое и коррозионное поведение титана в условиях поляризации его переменным током различной частоты, когда в катодный полупериод тока может происходить частичное или полное разрушение пассивного состояния, а в анодный полупериод — его возникновение. Подобные исследования кроме чисто научного интереса представляют, несомненно, и определенную практическую ценность, поскольку титан и его сплавы начинают все шире внедряться в технику как новый конструкционный материал с особыми свойствами и разносторонняя характеристика его коррозионных свойств в различных условиях становится необходимой. Помимо этого, можно полагать, что изучение электрохимических и коррозионных процессов путем наложения на исследуемый электрод переменного тока различной частоты и амплитуды при дальнейшем совершенствовании может явиться наиболее подходяш,им методом для исследования скоростей электродных процессов, а следовательно, и методом изучения механизма электрохимической коррозии и пассивности металлов. Цель настояш,ей работы — выяснение основных факторов, определяющих скорость коррозии титана под действием переменного тока, а также установление механизма образования и разрушения пассивирующих слоев, возникающих на поверхности титана  [c.83]


Приведены основные сведения по теории коррозии, включающие анализ поведения сплавов на основе диаграмм электрохимического равновесйя. Приведены коррозионные свойства всех основных металлов и сплавов в различных средах, изложены современные представления и конкретные сведения о влиянии на коррозию механических, электрохимических и металлургических факторов.  [c.2]

В последние годы большое внимание было уделено теоретическим вопросам коррозионного растрескивания. Среди медных сплавов в наибольшей степени исследовано поведение латуней в аммиачных средах. Хотя было показано, что растрескивание возможно и в контакте с некоторыми другими агрессивными средами, но воздействие аммиака остается наиболее сильным. Согласно предположению Эванса [132], это связано, во-первых, со слабой коррозионной активностью аммиака, вызывающего существенную коррозию только таких участков, как границы зерен или другие несовершенства, а во-вторых, с тем, что аммиак предотвращает скопление ионов меди в возникающих трещинах, образуя с медью стабильные комплексы [Си(ЫНз)4] +. Тип растрескивания (межкристаллитное или транскристаллитное) может меняться при изменении состава латуни или природы окружающей среды [175]. Матссон [176] установил, что при погружении в аммиачные растворы с различными значениями pH самое быстрое растрескивание напряженных латуней наблюдается при 7,1—7,3, и в этих же условиях иа поверхности металла возникают черные пленки. Роль тусклых поверхностных пленок изучалась и в дальнейшем [177]. Механизм коррозионного растрескивания медных сплавов обсуждался в многочисленных исследованиях посвященных электрохимическим [178] и металлургическим [179] аспектам проблемы. Статьи, посвященные этому явлению, включены в материалы нескольких симпозиумов и конференций по коррозии металлов под напряжением [159,  [c.106]

Коррозионное поведение различных металлов в почве. Наиболее распространенный металлический материал для подземных конструкций — это низколегарованная сталь и чугун. В табл. 10 приведены скорости коррозии железа в почвах различной агрессивности и сравнительные данные по скорости коррозии в других природных средах.  [c.47]

Ущерб от коррозии может быть снижен как путем рационального выбора металла при конструировании оборудования и различных сооружений, так и осуществлением конкретных мер защиты. В обоих случаях необходимо знание механизма коррозионных процессов, протекающих в условиях эксплуатации. Среди применяемых средств защиты металлов от коррозии лакокрасочные покрытия получили наибольшее распространение, но их выбор и применение далеко не всегда научно обоснованы. Это объясняется многокомпонентностью системы металл—лакокрасочное покрытие и влиянием различных факторов на поведение этой системы.  [c.5]

Водородное охрупчивание сравнительно просто проявляется в механических свойствах материала наиболее заметные изменения, как это следует из самого названия, чаще всего наблюдаются в параметрах пластичности. Коррозионное растрескивание, опять же по определению, связано с взаимодействием с окружающей средой, что может значительно усложнять явление. В настоящее время известно много самых различных комбинаций среда/материал, при которых возникает КР. В данной главе основное внимание будет уделено таким средам, где (по крайней мере при определенных условиях) может образовываться водород. Это дает возможность применить знания, связанные с поведением водорода в металлах. Такие условия существуют в большинстве распространенных сред (в частности, в водных хлоридсодержащих растворах).  [c.48]

Было бы, однако, ошибочным для определения возможно сти коррозионного процесса того или иного типа (т. е. с выделением водорода или при восстановления кислорода) посредством диаграммы, представленной на рис. 23, использовать значения равновесных потенциалов, взятых по табличным данным. В условиях действия на металл коррозионной среды потенциалы металлов могут существенным образом отличаться от их равновесных значений, относящихся к вполне олределешой концентрации потенциал-оп ределяющих ио-ной-и температуре. Такие потенциалы коррозии, как их часто называют, помимо природы металла зависят также от ионного состава электролита, различных примесей, и лк>бые оценки коррозионного поведения непременно должны осн01вывать-ся на точном учете именно таких потенциалов применительно к заданным условиям коррозионной среды.  [c.84]

Никель обладает высокой стойкостью в морских атмосферах [39]. В то же время в условиях погружения в морскую воду коррозионное поведение никеля может быть различным. В движущейся воде пассивность металла может сохраняться, а в неподвижной воде наблюдается склонность к местному разрушению пассивной пленки, в результате чего возникает ниттинг [40]. В основном никель используется в качестве одного из компонентов сплавов, применяемых в морских условиях. Хорошей стойкостью к морским средам обладают широко применяемые сплавы никель — медь, например Монель 400, а также сплавы системы медь — никель.  [c.75]

Анализ поляризационных кривых позволяет сделать вывод, в том числе и относительно выбора потенциала защиты для оборудования из стали А15М10 в исследованных средах при потенциалах, больщих или равных Епо, протекает локальная коррозия или питтингообразование при потенциалах, меньших или равных Ез, коррозия не протекает, т. е. металл полностью защищен. Коррозионное поведение стали зависит от состояния ее поверхности, состава, вида кристаллической структуры, наличия различных ионов в среде, окислительно-восстановительных характеристик среды.  [c.92]

В книге содержатся теоретические и инженерные сведения об исполь зовании искусственно наведенной пассивности в практике защиты металлов от коррозии. Изложены общие представления об анодной защите металлов, коррозионно-электрохимическом поведении углеродистой и нержавеющих сталей, титана и анодной защите их в различных электропроводящих средах. Большое внимание уделено аппаратурному оформлению метода като дам, электродам сравнения, средствам регулирования и контроля потенциала, автоматическим системам. Описан новый вариаит защиты — анодная защита с дополнительным катодным протектором. Приведены примеры промышленного применения анодной защиты, показаны эффективность и экономичность этого вида зашиты.  [c.2]

Важность проблемы создания и применения Н0 вых химически стойких металлических материалов в различных отраслях. нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевьгм ресурсам и возможностям металлургической иромышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах.  [c.65]



Смотреть страницы где упоминается термин Коррозионное поведение металлов в различных средах : [c.31]    [c.315]    [c.13]    [c.17]    [c.255]    [c.176]    [c.3]    [c.199]    [c.114]    [c.23]   
Смотреть главы в:

Защита металлов от коррозии  -> Коррозионное поведение металлов в различных средах



ПОИСК



Коррозионная pH среды

Коррозионное поведение

Поведени

Различные металлы



© 2025 Mash-xxl.info Реклама на сайте