Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Развитие кавитационного разрушения

Дальнейшее развитие кавитационного разрушения идет по пути увеличения количества вмятин и питтингов с перекрытием их и образованием грубого рельефа за счет многократного деформирования поверхностных слоев. Накопление микронеоднородной пластической дет формации и локальных питтинговых повреждений приводит к образованию глубоких впадин, разделенных перегородками выдавленного металла. Многократная дет  [c.15]

Развитие кавитационного разрушения  [c.620]

Изменение в широких пределах рабочих параметров гидравлических машин (напора, расхода, мощности) приводит к тому, что в ряде случаев, несмотря на принимаемые меры, машины работают в режимах с развитой кавитацией. Помимо ухудшения энергетических характеристик машин, повышения вибрации и уровня шума, отрицательные последствия кавитации проявляются в кавитационном разрушении рабочих органов машины. При наличии в воде взвешенных наносов интенсивность этого разрушения резко возрастает вследствие абразивного износа. Механические повреждения рабочих органов гидравлических машин в результате кавитационной эрозии или истирающего действия абразивных частиц могут за относительно короткий срок достигнуть размеров, затрудняющих нормальную эксплуатацию машин и даже делающих ее практически невозможной.  [c.5]


Рис. 13. Развитие и разрушение сферического кавитационного пузырька в потоке жидкости Рис. 13. Развитие и разрушение сферического кавитационного пузырька в потоке жидкости
Поскольку достоверность всех этих опытов не вызывает сомнения, то на основе полученных данных можно сделать вывод, что влияние скорости потока на кавитационную эрозию меняется в зависимости от ряда факторов. Основными из них, - при прочих равных условиях, являются, как это будет показано дальше, степень развития кавитации и продолжительность ее действия. Помимо этого, большое значение имеют и физические свойства жидкости. Так, в опытах с ртутью в качестве кавитирующей жидкости [78] было отмечено уменьшение интенсивности эрозии с увеличением скорости потока. По-видимому, в этом случае большая плотность жидкости является основным фактором, определяющим степень кавитационного разрушения поверхности.  [c.33]

Чрезвычайно важным фактором в оценке кавитационной эрозии является время. Чем больше продолжительность воздействия кавитации на направляющую поток поверхность, тем большему разрушению она будет подвергнута. Однако развитие эрозии во времени происходит нелинейно., Как показали опыты [21, 77, 111], кавитационное разрушение материала начинается не сразу, а по истечении времени, которое обычно называют инкубационным периодом. В течение этого периода происходят, как правило, значительные пластические деформации поверхностного слоя материала без каких-либо существенных потерь объема или веса.  [c.39]

Турбины Братской ГЭС начали эксплуатироваться при напоре 50 м, что составляет примерно половину его расчетного значения. Работа турбин в этот период характеризовалась развитыми кавитационными явлениями, вызывавшими интенсивное разрушение отдельных элементов рабочих колес. С увеличением напора до 80 м площадь кавитационной эрозии значительно сократилась, однако интенсивность эрозии оставалась довольно высокой. При повышении напора до расчетного значения интенсивность разрушения уменьшилась настолько, что межремонтный период эксплуатации турбин, с точки зрения устранения последствий кавитационной эрозии, составляет около 5 лет.  [c.123]

Из всего изложенного следует, что определение действительных условий возникновения и развития кавитации в рабочих органах насосов и гидравлических турбин необходима для выявления режимов работы, наиболее опасных с точки зрения кавитационного разрушения. Эта задача в настоящее время может быть решена лишь при помощи комплексных натурных испытаний, поскольку никакие исследования моделей не в состоянии отобразить всего многообразия реальных условий эксплуатации.  [c.123]


Развитие эрозионного разрушения, начавшееся с дислокацией, приводит к появлению лунок, которые продолжают развиваться в глубину, а перегородки между ними утончаются. Возникает характерная для ударно-эрозионного разрушения иглообразная структура ио-верхности металла (рис, 7-5). В этот период интенсивность эрозионного разрушения несколько снижается вследствие демпфирующего влияния жидкости или пара, находящихся во впадинах, и уменьшения площади контакта капли с металлом при попадании ее на остроконечный выступ. Дальнейшее развитие разрушения происходит за счет утончения и выкрашивания иглообразных выступов, а также за счет вовлечения в эрозию новых слоев металла. При малых скоростях соударения и значительных размерах капель более существенную роль в эрозии лопаток начинают, ио-видимому, играть кавитационные процессы. Последовательные стадии разрушения оказываются аналогичными отмеченным выше.  [c.145]

Конденсатные насосы должны надежно работать при наличии начальной и развитой кавитации в зоне рабочего колеса, а в некоторых случаях - при наличии суперкавитационного обтекания элементов рабочего колеса. Такие условия работы требуют применения для конденсатных насосов относительно низкой частоты вращения, использования материалов, стойких к кавитационным разрушениям, установки для первой сту пени насоса рабочих колес специальной конструкции с высокой всасывающей способностью. В  [c.40]

Развитие процесса гидроэрозии обычно приводит к интенсивному разрушению отдельных участков рабочей поверхности детали. Борьба с таким разрушением металла сопряжена с большими трудностями. Наилучший эффект получают в том случае, когда наряду с выбором эрозионно-стойкого материала ведут борьбу с самим явлением кавитации. В связи с этим во избежание кавитационного разрушения деталей целесообразно использовать наиболее удобные конструктивные формы, устраняющие явление кавитации, выполнять рациональный выбор материала или применять эффективную обработку, упрочняющую рабочую поверхность детали.  [c.9]

На основании своих опытов Уилер [81 ] предложил следующую гипотезу, объясняющую механизм эрозии металлов при кавитации. По его мнению, в таких условиях возникают высокие местные давления, способные вызвать в микрообъемах металла пластическую деформацию и местную концентрацию напряжений. Значительная часть работы деформации переходит в тепло, в результате в микрообъемах металла резко возрастает местная температура. Кроме того, местная температура может сильно возрасти (теоретически до нескольких тысяч градусов) в результате сокращения кавитационного пузырька. В этих условиях при наличии агрессивной среды образуются окислы, которые препятствуют свариванию смещенных объемов металла. Развитие такого процесса приводит к образованию аморфной смеси, состоящей из массы металла и его окислов. Смесь отделяется от поверхности при эрозии, и на этом месте снова образуются такие же продукты износа. Подобное представление о роли коррозии и механизме кавитационного разрушения металлов нуждается в более глубоких и тонких экспериментальных исследованиях.  [c.71]

На примере кавитационного разрушения цилиндровых втулок (см. табл. 16) видно, что вибрация может быть сильным источником кавитации. Развитие интенсивной эрозии определяется величиной ускорений. При уровне вибрации 2bg эрозия развивается сравнительно медленно. На втулке, проработавшей 1400 ч, обнаружено несколько неглубоких раковин с потерями массы 8,5 г.  [c.75]

Положение зоны разрушения, если оно происходит, можно определить в соответствии с разд. 8.3. Максимальное разрушение наблюдается на конце каверны, однако некоторое разрушение происходит между этой точкой и началом каверны, а также на заметном расстоянии вниз по потоку от ее конца. В связи с этим следует напомнить, что во всех случаях кавитационного разрушения на непрерывной поверхности конструктивные элементы, которые являются причиной развития кавитационной зоны, находятся выше по течению от зоны разрушения. Область разрушения сама по себе является областью высокого давления.  [c.338]

Связь между степенью развития кавитации и кавитационным разрушением  [c.618]


Часто полагают, что при всех прочих равных условия. интенсивность разрушения растет с увеличением размеров каверны эквивалентно увеличению интенсивности разрушения с увеличением степени развития кавитации. Это мнение не подтверждается ни натурными опытами, ни лабораторными экспериментами. В гидравлических турбинах обычно кавитационное разрушение начинается на начальных стадиях развития кавитации, когда последняя не оказывает сколько-нибудь заметного  [c.618]

Подробные сведения о кавитационном разрушении при вихревой кавитации отсутствуют. В машинах с высокой быстроходностью, которые не имеют бандажа на рабочем колесе, каверны, образующиеся при течении через зазоры между стенкой корпуса и наружными концами лопастей, обладают многими свойствами, присущими вихревой кавитации, и производят иногда значительные разрушения, особенно если эти каверны соприкасаются с поверхностью лопасти [1]. Действительно, если степень развития этой кавитации достаточно велика, с выходных кромок лопастей могут сходить свободные кавитационные вихри, которые можно наблюдать на больших расстояниях за выходными каналами. Однако было замечено также, что кавитация в зазоре у концов лопастей производит разрушение лопасти со стороны низкого давления на небольшом радиальном расстоянии от конца. Можно предположить, что в этих местах поверхность лопасти пересекается с концевым вихрем. В этих условиях течение имеет все основные особенности течения с присоединенной каверной. Зона разрушения появляется в ожидаемом месте. Вероятно, нечто похожее может проис.хо-дить и в выходных каналах, если ядро свободного вихря взаимодействует со стенками каналов машины.  [c.620]

Однако, как указывалось ранее, кавитационное разрушение, по-видимому, примерно постоянно при умеренных изменениях степени развития кавитации. Поэтому создается впечатление, что наблюдаемые изменения интенсивности разрушения обусловлены изменениями содержания воздушных и газовых ядер, а не изменениями плотности давления насыщенного пара. Обычно в природной воде содержится слишком мало газа, чтобы он мог оказывать сколько-нибудь ощутимое влияние на давление схлопывания, а следовательно, и на гидродинамическое воздействие, которое приводит к разрушению. Однако изменения содержания газа наряду с изменениями концентрации и типа ядер будут влиять на средний размер перемещающихся каверн. Установлено, что небольшое изменение среднего размера может оказывать существенное влияние на интенсивность разрушения. Чем больше средний размер, тем больше интенсивность разрушения. Если время роста ядер одинаково, то большее ядро вырастает в каверну больше среднего размера. Однако каверны, образующиеся из больших ядер, начинают расти раньше и повторное их развитие после схлопывания более вероятно, чем в случае каверн, выросших нз малых ядер. Вообще высокое содержание газа и ядер обнаруживается в весенние и летние месяцы, которые в соответствии с имеющимися данными являются также сезонами максимальных интенсивностей разрушения.  [c.622]

Количественная информация о влиянии кавитационного разрушения направляющих поверхностей на эксплуатационные характеристики гидравлических машин практически отсутствует. Однако можно сделать некоторые выводы. Кавитационное разрушение поверхности может оказывать влияние на течение посредством двух различных механизмов. Во-первых, оно увеличивает шероховатость поверхности и поэтому может увеличить гидравлические потери вследствие поверхностного трения. Во-вторых, если разрушение происходит в критической области на направляющей поверхности, оно может изменить направление потока. Эффективность этих воздействий будет зависеть от нескольких факторов, наиболее очевидным из которых будет интенсивность разрушения. Второй фактор, который необходимо учитывать, относится к условиям эксплуатации, т. е. к степени развития кавитационных процессов в машине. Еще одним важным фактором является тип машины.  [c.624]

Приведенные исследования по определению скорости движения охлаждающей воды показывают, что она, как правило, меньше 1 м/с и лишь в местах подвода в отдельных случаях составляет 2—8 м/с, г. е. не достигает критических значений, необходимых для развития кавитации и кавитационных разрушений.  [c.144]

Причина различной скоростной зависимости критических параметров при внутри- и межзеренном разрушении заключается в разной природе физических процессов, приводящих к накоплению меж- и внутризеренных повреждений. Как уже отмечалось, межзеренное разрушение в рассматриваемых условиях связано с зарождением, ростом и объединением пор по границам зерен. Следует подчеркнуть, что во многих работах [199, 256] разрушение по границам зерен связывается с ростом микротрещин, зародившихся в стыках трех зерен. Однако выполненные в последнее время фрактографические исследования [256] достаточно убедительно показали, что указанные механизмы не являются альтернативными в обоих случаях процесс развития повреждений является кавитационным [256, 326]. Более легкое зарождение пор в тройных стыках приводит к неоднородному развитию повреждений и формированию клиновидных микротрещин, которые в процессе роста поглощают мелкие поры, зарождающиеся по всей поверхности границ зерен [256]. Таким образом, указанная дифференциация межзеренных повреждений является достаточна условной и при описании процессов накопления повреждений на границах зерен целесообразно исходить из моделирования их кавитационными механизмами.  [c.154]

Повреждение, обусловленное интенсивным порообразованием по границам зерен в материале, может приводить к значительному его разрыхлению. В этом случае проведение независимого (несвязного) анализа НДС и развития повреждений в материале дает значительные погрешности. Например, отсутствие учета разрыхления в определенных случаях приводит к существенному занижению скорости деформации ползучести и к снижению скорости накопления собственно кавитационных повреждений. В настоящее время связный анализ НДС и повреждаемости базируется в основном на феноменологических подходах, когда в реологические уравнения среды вводится параметр D, а в качестве разрушения принимается условие D = 1 [47, 50, 95, 194, 258, 259]. Дать физическую интерпретацию параметру D достаточно трудно, так как его чувствительность к факторам, определяющим развитие межзеренного повреждения, априорно предопределена той или иной феноменологической схемой. Так, во многих моделях предполагается, что D зависит только от второго инварианта тензора напряжений и деформаций и тем самым исключаются ситуации, когда повреждаемость и, как следствие, кинетика деформаций (при наличии связного анализа НДС и повреждения) являются функциями жесткости напряженного состояния.  [c.168]


Влияние степени развития кавитации на интенсивность разрушения ограждающих поток поверхностей была отмечена в ряде экспериментов [74, 77, 111]- Установлено, что интенсивность эрозии первоначально возрастает с развитием кавитации, достигает максимума, а затем уменьшается. Строго зафиксировать момент максимальной интенсивности эрозии пока не представляется возможным, поскольку степень развития кавитации является весьма относительным качественным понятием и не может быть выражена в каких-либо единицах. Опыты, проводившиеся с соплом Вентури [77], показали, что максимальная интенсивность кавитационной эрозии имела место при первом появлении устойчивой кольцеобразной кавитационной зоны. Придерживаясь проведенной нами ранее градации развития кавитации, этот момент можно считать соответствующим ранней стадии частично развившейся кавитации.  [c.34]

Уменьшение давления при этом означает, что число кавитационных пузырьков в процессе развития кавитации увеличивается, однако энергия сферической ударной волны, образующейся при их разрушении, уменьшается.  [c.35]

С нашей точки зрения, снижение критической деформации в агрессивной среде в первую очередь связано с увеличением темпа развития повреждений и, как следствие, с ростом скорости деформации в режиме ползучести (см. раздел 3.3). Уменьшение критического уровня повреждаемости при кавитационном разрушении маловероятно, так как на критическое событие — слияние микропор, обусловленное пластической неустойчивостью, — не будет оказывать влияние когезивная прочность материала. Итак, предположим, что критическая повреждае-  [c.167]

В развитии кавитационно-эрозионного разрушения большая роль отводится структурному фактору. Так, стали ферритного класса сопротив-ляготся кавитационному разрушению куже, чем аустенитные (рис, 6) [71,  [c.167]

Предлагаемый читателю первый том справочника Металловедение и термическая обработка стали посвящен изложению методик изучения тонкого строения и структуры сталей и определению их разнообразных свойств (механических, физических, эксплуатационных). Такое построение многотомного справочника представляется правильным, если иметь в виду преимущественно экспериментальный характер науки о металлах. В этом томе, наряду с традиционными методами изучения структуры и свойств (макро- и микроанализ, рентгеновская дифракто-метрия, электронная микроскопия, определение механических свойств при растяжении, ударе, циклическом нагружении и т.п.), рассмотрены развитые в последние годы тонкие методы структурых исследований (спектроскопические, резонансные, микроспектральные и др.) и методы определения сопротивления разрушению в различных условиях нагружения (параметры вязкости разрушения, кавитационное разрушение, износостойкость, сопротивление газовой коррозии) в сочетании с подробным изложением методик фрактографического анализа. Все эти новые разделы отличают настоящее издание от предыдущих.  [c.8]

Разрушению подвергаются при развитой кавитации детали различных гидроагрегатов. На рис. 23 показан плунжер распреде лительного золотника (клапана) следящей гидросистемы, работавший в условиях значительного дросселирования жидкости. Кавитационному разрушению подвергаются также торцы блока цилиндров и межоконные перемычки распределительного диска аксиально-поршневых насосов (см. рис. 73), на поверхности которых образуются глубокие питинги и выколы (см. рис. 76).  [c.45]

Ужесточение условий эксплуатации изделий из конструкционных сталей, с одной стороны, и все более детальные лабораторные исследования, с другой стороны, приводят к обнаружению все новых опасных проявлений обратимой отпускной хрупкости. Еще соегсем недавно сч№ тали, что отпускная хрупкость приводит лишь к повышению порога хладноломкости и снижению вязкости разрушения в переходном интервале температур. Затем выяснилось, что может уменьшаться и трещиностойкость (7-интеграл) в области вязкого разрушения, долговечность при ползучести, радиационная стойкость, усталостная прочность и что особую опасность представляет усиление склонности к водородному охрупчиванию и коррозионному растрескиванию в электролитах. Появились данные об усилении при развитии отпускной хрупкости восприимчивости сталей к жидкометаллической и твердо-металлической хрупкости. В связи с тем, что элементы межзеренного разрушения встречаются в самых разнообразных условиях механического нагружения, можно ожидать, что будут выявлены и новые области проявления отпускной хрупкости (например, при кавитационном разрушении, зернрграничном проскальзывании, трении и износе). Близкие по природе к явлению обратимой отпускной хрупкости процессы охрупчивания могут развиваться и в сталях аустенитного класса. Обнаружение и исследование этих новых проявлений отпускной хрупкости и близких к ней явлений также представляется важным направлением дальнейшей работы.  [c.210]

В настоящее время общепринято, что необходимым условием инициирования межкристаллитных повреждений является проскальзывание по границам зерен, которое разбиралось в предыдущей главе. Развитие межкристаллитных повреждений может происходить разными путями. В следующих разделах этой главы будут обсуждаться, гд[авным образом, кавитационные повреждения и кавитационное разрушение. Однако прежде целесообразно будет коснуться наиболее важных методик количественного изучения накопления повреждений и разрушения.  [c.228]

Отсутствие убедительных экспериментальных данных привело к появлению многочисленных гипотез как об основной причине разрушения, так и о расположении области разрушения относительно зон образования и схлопывания каверн. Одно время, считалось, что давление, развивающееся при схлопывании каверн, недостаточно велико, чтобы вызывать механическое разрушение материалов. В связи с этим делались попытки объяснить разрушение при образовании каверн действием сил поверхностного натяжения или сил сцепления в предположении, что каверны непосредственно соприкасаются с поверхностью. Однако никому не удалось предложить правдоподобный механизм возникновения достаточно больших сил, способных вызвать механическое разрушение поверхностей. Экспериментаторы, изучавшие кавитационное разрушение в потоках жидкостей, пришли к выводу, что разрушение происходит в нижнем по потоку конце кавитационной зоны. Кроме того, эксперименты, в которых каверна образовывалась с помощью искрового разряда в неподвижной жидкости на поверхности фотоуп-ругого твердого материала [38], со всей очевидностью показали, что развитие высоких напряжений на поверхности твердого тела совпадает по времени со схлопыванием каверны, а не с начальной стадией ее развития.  [c.382]

В большинстве случаев влияние кавитационного разрушения на рабочие характеристики меньше, когда оборудование работает в условиях развитой кавитации, а не в бескавитационных условиях. При этом основной поток минует часть разрушенной поверхности и поэтому не подверн ен ее влиянию. Следует подчеркнуть, что в данном разделе рассматривались проблемы, связанные с разрушенными поверхностями, а не с присутствием или отсутствием кавитационной каверны.  [c.625]

Много споров было относительно того, является ли кавитационная эрозия чисто механической проблемой пли химической (п, следовательно, может рассматриваться, как один из видов коррозии), или же, наконец, это есть результат одновременного действия обоих факторов. По этому вопросу имеется обширная литература. В 1912 г. Рамзей [27] предположил, что кавитационная эрозия является формой электролитической коррозии участков металлической поверхности, имеющих закалочное напряжение, на которых происходит разрушение образующихся кавитационных пузырьков. По мнению Фиттенгера [28], доминирующим в этом случае является механическое разрущение, в то время как электрохимические эффекты играют незначительную роль. В теории, предложенной Новотным [11] постулируется, что разрушение под действием кавитации является по своей природе чисто физическим процессом. В общепринятой теории, развитой в более поздний период, принимается, что в первоначальной своей стадии кавитация является чисто физическим процессом. Однако в результате этого процесса поверхность оказывается в значительной мере разрушенной и менее прочной. Поэтому она чрезвычайно легко подвергается коррозии, особенно на тех участках, где разрушение кавитационного пузырька приводит к возникновению питтингообразного углубления. После этого наблюдается быстрое развитие коррозионного процесса питтингового характера. Участки металла, подвергающиеся коррозии, делаются еще менее прочными и становятся все более восприимчивыми к кавитационному разрушению. В конце концов ситуация становится катастрофической, так как кавитация и коррозия взаимно ускоряют друг друга, что приводит к развитию питтинговой коррозии по всей толщине футеровки.  [c.141]


Выполненный анализ зарождения и роста пор позволяет сформировать подход к рассмотрению кавитационного межзе-ренного разрушения в случае интенсификации развития повреждения теми или иными факторами, в частности агрессивной средой. Известно, что влияние агрессивной среды может проявляться в виде двух основных процессов. Первый обусловлен непосредственным взаимодействием среды с металлом и разрушением продуктов взаимодействия под действием напряжений. Второй процесс связан с переносом к границам зерен различных элементов среды (например, кислорода, водорода и др.), ускоряющих тем или иным способом межзереннсе разрушение материала. Для объяснения этого нетрадиционного механизма влияния среды на характеристики разрушения предложены различные модели [240, 286, 306, 329, 334, 424]. В частности, охрупчивающее влияние кислорода может быть связано с ограничением подвижности границ зерен и увеличением их проскальзывания, приводящего к росту межзеренных повреждений [240]. Рассматривался также клиновой эффект, возникающий  [c.166]

Появление кавитации в насосах сопровождается рядом характерных явлений, отрнцателвно сказывающихся на работе насоса. При разрушении кавитационных пузырьков в зоне повышенного давления возникают шум и вибрация. Уровень шума зависит от размеров насоса и степени развития кавитации. Кавитационный шум проявляется в виде характерного потрескивания в зоне входа в рабочее колесо, развитая кавитация сопровождается уменьшением КПД насоса и разрушением (эрозией и коррозией) поверхности лопаток рабочих колес. Напор и мощность также снижаются. Из этого следует, что работа насоса в условиях кавитации недопустима.  [c.157]

В работах Гликмана и др. Л. 43 и 98] теория разрушающего действия кавитации получила дальнейшее развитие. В них приведены экспериментальные данные, полученные при исследовании поверхностного слоя образцов, подвергнутых кавитационному воздействию на магнитострикционном вибраторе. Анализом микроструктуры образцов, подвергнутых кавитации, установлено, что на первой стадии разрушения в поверхностном слое образца протекает пластическая деформация и происходит наклеп на глубину нескольких десятков микрон Ч Это происходит под действием многократно повторяющихся гидравлических ударов. С увеличением длительности кавитационного воздействия микродефор-мационная картина усиливается и, начиная с некоторого момента, наблюдается появление микроскопических трещин и выколов.  [c.63]

Можно предположить, что при циклическом характере возникновения описанного выше режима разрушение парогенерирующего канала может произойти в зоне зарождения паровой среды даже в том случае, если критическая нагрузка в канале не будет достигнута. При этом интенсивность износа стенки канала повышается вследствие кавитационного схлопы-вания пузырей пара в скачке давления. Такие условия могут возникнуть в экономайзерной зоне парогенераторов задолго до наступления развитого кипения.  [c.97]

Процесс распада струи, истекающей из ультразвуковых форсунок, объясняется наличием двух явлений, которые обусловлены воздействием высокочастотных колебаний с одной с ороны, распространением на поверхности жидкости микроволн, которые под действием силы поверхностного натяжения, давления звукового излучения и звукового ускорения приводят к отрыву отдельных капель с другой стороны, интенсивным образованием кавитационных зон, развитие и рост которых также приводят к разрушению топливной струи.  [c.16]

Увеличение скорости потока также означает увеличение -числа кавитационных пз зырь-ков, но уменьшение энергии, выделяющейся при их разрушении, так как чем больше скорость потока, тем меньше время пребывания пузырька в пределах кавитационной зоны, а следовательно, и его размер в момент разрушения. Таким образом, можно предполагать, что наиболее интенсивной эрозия будет на какой-то промежуточной стадии развития кавита-  [c.35]

При изучении одновременного воздействия иа рабочую поверхность взвешенных наносов и кавитации бо.аьшой теоретический и практический интерес представляют две проблемы. Первая заключается в установлении влияния взвешенных наносов на возникновение и развитие кавитации в потоке жидкости. Вторая сводится к определению интенсивности суммарного кавитационно-абразивного износа при различных соотношениях каждого из разрушающих процессов в отдельности. Обе эти проблемы остаются нерешенными до настоящего времени. Основной причиной такого положения являются недостаточность опытных данных и трудности в выявлении роли каждого из этих процессов в разрушении деталей гидромашин.  [c.106]


Смотреть страницы где упоминается термин Развитие кавитационного разрушения : [c.621]    [c.160]    [c.12]    [c.111]    [c.81]    [c.317]    [c.27]    [c.618]    [c.168]   
Смотреть главы в:

Кавитация  -> Развитие кавитационного разрушения



ПОИСК



Разрушение кавитационное

Связь между степенью развития кавитации и кавитационным разрушением

Шум кавитационный



© 2025 Mash-xxl.info Реклама на сайте