Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность при динамически переменных нагрузках

При динамических переменных нагрузках (обычно выбирают случай симметричного цикла, когда за один цикл напряжения равны по величине, но противоположны по циклу) коэффициент концентрации будет иной, чем при статической нагрузке. Будем называть опытное значение коэффициента концентрации при быстро меняющихся переменных нагрузках эффективным коэффициентом концентрации и обозначать его эф. Иначе, эф — отношение наибольшего напряжения предела прочности от воздействия переменных нагрузок (симметричного цикла) при наличии концентрации к напряжению предела прочности при отсутствии концентрации. Эффективный коэффициент концентрации всегда меньше теоретического коэффициента концентрации к, что объясняется сложностью напряженного состояния в зоне концентрации, а также особенностью действия переменных нагрузок.  [c.261]


Присутствие в стали MnS вместо FeS все-таки нежелательно, так как вытянутые, а иногда и точечные включения ослабляют материал работающей детали и создают условия для концентрации напряжений. Очень часто эти включения при повторно-переменных нагрузках являются очагами разрушения от усталости. Наличие серы в стали, кроме того, понижает динамическую прочность, сопротивление износу и коррозионную стойкость.  [c.44]

Прочность при динамических и переменных нагрузках  [c.337]

ПРОЧНОСТЬ ПРИ ДИНАМИЧЕСКИХ и ПЕРЕМЕННЫХ НАГРУЗКАХ  [c.300]

Уже в первой половине XIX века было замечено, что детали машин и сооружений при действующих длительное время циклических нагрузках могут разрушаться внезапно без заметных остаточных деформаций при значительно меньших напряжениях, чем разрушающие напряжения при статическом нагружении. Явление понижения прочности материала при динамических переменных во времени напряжениях было названо усталостью, или в ы н о с л и в о с т ь ю, материала. Не совсем удачное-наименование данного явления усталость материала , сохранившееся по настоящее время, не случайно. В начале изучен причин разрушения материала при циклических нагрузках была сделано предположение, что под влиянием длительно действующих переменных напряжений материал устает и его статическая прочность понижается. Однако опыты на статическое растяжение деталей, длительное время работавших при циклических нагрузках, показали, что механические свойства материала под действием переменных напряжений не изменяются. Не подтвердилось также предположение, что переменные напряжения изменяют структуру материала. Исследованием материала под микроскопом после воздействия циклических напряжений обнаружено, что структура его не изменяется.  [c.489]

Точечные и роликовые сварные соединения во многих конструкциях, например автомобилях, судах, самолетах и т. п., кроме статических нагрузок, испытывают значительные динамические (переменные) нагрузки. При динамических нагрузках на прочность оказывают большое влияние факторы, которые при статических нагрузках проявляются незначительно.  [c.202]

Как правило, при статических нагрузках допускаемое напряжение [з]р = - ,где К—коэффициент запаса прочности, принимаемый обычно равным 1,4н- 1,6. При динамических переменных 3 823 33  [c.33]

РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ И ДИНАМИЧЕСКИХ НАГРУЗКАХ  [c.343]


I. Предварительные замечания. В 2.11 и 2.13 были описаны статические кратковременные испытания гладких образцов из различных материалов на растяжение и сжатие при комнатной температуре. Предыдущие параграфы настоящей главы содержат описание различных упругих и механических свойств материалов и оценку влияния различных факторов на эти свойства. Уже при этом обсуждении приходилось обращаться к результатам динамических испытаний (при определении сопротивляемости ударному воздействию и при оценке влияния скорости деформирования на различные свойства), кратковременных и длительных испытаний при высоких температурах (при определении предела длительной прочности и предела ползучести, а также при оценке влияния температурного фактора на различные свойства), длительных испытаний при переменных по величине и знаку нагрузках, длительных испытаний при комнатной температуре и постоянной нагрузке и при монотонно убывающей нагрузке. Приходилось, наряду с рассмотрением результатов испытания гладких образцов, обращаться и к анализу материалов испытаний образцов с надрезом указывалось, что, кроме непосредственного определения интересующих инженера свойств материала, существуют косвенные пути оценки этих свойств (при помощи определения твердости) отмечалось, что,  [c.298]

Зубчатые (шлицевые) соединения по сравнению со шпоночными обладают преимуществами а) детали на зубчатых валах лучше центрируются и лучше направляются при передвижении вдоль вала б) напряжения смятия на гранях зубьев меньше, чем на поверхностях шпонок в) прочность зубчатых валов при динамических и переменных нагрузках выше, нежели валов со шпонками.  [c.548]

Первое предельное состояние определяется несущей способностью конструкции — ее прочностью при статических и выносливостью при переменных и динамических нагрузках. Второе предельное состояние обусловлено наибольшей деформацией конструкции — прогибами при статических нагрузках, колебаниями при динамических. Третье предельное состояние характеризуется максимально допустимыми местными повреждениями, например, толщиной слоя окалины, глубиной коррозии и т. п.  [c.56]

При симметричном цикле опасным напряжением является предел выносливости, который, как правило, всегда меньше предела текучести материала. Допускаемая величина напряжения при симметричном цикле [p i] найдется путем деления предела выносливости p t на коэффициент запаса прочности kr, который, кроме основного коэффициента запаса ка, должен включать коэффициент концентрации напряжений а д, масштабный коэффициент и, в случае надобности, коэффициенты, учитывающие влияние технологии изготовления и условий эксплуатации детали K и Если переменные нагрузки меняются не плавно, а сопровождаются резкими ударами, то дополнительно должен быть введен еще и динамический коэффициент Кд, числовые значения которого в этих случаях колеблются обычно между единицей и двумя. Таким образом, как для хрупких, так и для пластичных материалов  [c.563]

Механические испытания разделяют на три вида статические, когда нагрузка на испытываемый образец возрастает плавно динамические, когда нагрузка прилагается мгновенно, ударом и усталостные, когда к испытываемому образцу прилагают переменные по величине или по направлению усилия (циклическая нагрузка). Испытания производят на стандартных образцах, которые вырезают непосредственно из контролируемой сварной конструкции или из специально сваренных в таких же условиях контрольных образцов. Виды испытаний, методика их проведения, форма образцов определены государственными стандартами. В результате испытаний определяют предел прочности, относительное удлинение, угол загиба, ударную вязкость, твердость, усталостную прочность и другие показатели механических свойств металла сварного соединения. Некоторые ответственные сварные конструкции испытывают на конструктивную прочность, прилагая к ним нагрузки, превышающие эксплуатационные, и определяя, при какой нагрузке конструкция разрушается. Например, сварные емкости разрушают внутренним давлением жидкости - производят гидроиспытания. По результатам таких испытаний одного-двух изделий судят о необходимости доработки конструкции или технологий ее изготовления.  [c.36]


В механизмах передачи и распределения энергии зубчатые колеса, кулачки и другие детали подвергаются многократному циклическому воздействию переменных нагрузок. Рабочие участки деталей, находящиеся в контакте с другими деталями, воспринимают и передают значительные силы и поэтому должны иметь высокую прочность при контактном нагружении и стойкость по отношению к контактной усталости. Кроме того, эти участки должны быть износостойкими. Сердцевина деталей, кроме высоких прочности и вязкости, для того чтобы противостоять динамическим нагрузкам, должна иметь высокое сопротивление усталости. Надежная работа таких деталей обеспечивается рациональным выбором сталей и режимов обработки деталей. Для упрочнения поверхности стальных деталей используют химикотермическую обработку (цементацию, нитроцементацию, азотирование), а также поверхностную закалку. Цементация и нитроцементация обеспечивают максимальную несущую способность деталей.  [c.99]

Вредна динамическая нагрузка при частых и быстрых изменениях скорости и направления движения. Такая переменная нагрузка вызывает усталость металла , возникают изменения в его строении, которые снижают прочность и сокращают срок службы станка. В результате конструкторы стремятся к тому, чтобы движение в станках было равномерным, с меньшими изменениями скорости и направления.  [c.67]

Поэтому для пластичных материалов концентрация напряжений менее опасна, чем для хрупких, а при статическом нагружении элемента конструкции она совсем не влияет на его прочность. Вот почему при расчете на осевое растяжение и сжатие стержней из пластичных материалов при статической нагрузке не учитывают влияние концентрации напр яжений в ослабленных отверстиями сечениях, а лишь определяют величину средних напряжений по площади (см. пример 6). Если же на элемент конструкции с ослабленным сечением действует динамическая или повторно-переменная нагрузка, вызывающая в сечениях напряжения разных знаков, то в этих случаях, несмотря на пластичность материала, концентрация напряжений оказывает существенное влияние на его прочность.  [c.56]

Анализ влияния жесткости навесного оборудования на динамические нагрузки в землеройно-транспортных машинах приводит к выводу о необходимости значительного снижения (в 5—8 раз) жесткости их конструкции в направлении резания без уменьшения прочности. При этом возникают трудности конструктивного порядка, связанные в первую очередь с увеличением веса и объема упругих элементов. Поэтому становится целесообразным применение пневматических и гидропневматических, а также механических шарнирно-рычажных устройств. Кроме того, уменьшение жесткости служит причиной больших колебаний рабочего органа даже ири кратковременных перегрузках, снижая производительность и долговечность конструкции и ухудшая качество работ. Таким образом, оптимальная упругая характеристика защитного устройства, очевидно, должна иметь переменную жесткость, т. е. быть нелинейной. В интервале рабочих усилий от О до номинального которое выбирается из условий устойчивой и экономичной работы машины, жесткость должна быть наибольшей, а при усилиях, превышающих номинальное, — наименьшей и позволяющей устройству поглотить избыток кинетической энергии при ударных нагрузках. Оптимальная идеальная упругая характеристика представлена на рис. 207 и близка к характеристикам типа релейных (с предварительным натягом — по В. П. Терских, или с ограничением по модулю).  [c.428]

Опыт эксплуатации сварных конструкций показывает, что технологические дефекты могут существенно снижать работоспособность сварных соединений.. В конструкциях, работающих в условиях статического нагружения, дефекты нередко становятся очагами хрупких трещин, возникающих при низких уровнях рабочих напряжений (сТраз < а , а в конструкциях, работающих при переменных нагрузках, они снижают предел выносливости сварных соединений. Механизм влияния дефектов на прочность в обоих случаях различен, в связи с чем влияние дефектов на прочность в условиях статического и динамического нагружения рассмотрено отдельно.  [c.277]

Д. И. Гольцев. Об условиях прочности при переменных нагрузках и сложном напряженном состоянии. Сб. Вопросы динамики и динамической прочности>, Рига, 1953.  [c.76]

Наличие подобных включений нельзя назвать желательным и оно недопустимо для ответственных деталей. Хотя эти включения и не отражаются на величинах статической прочности детали, они могут снизить ее усталостную и динамическую прочность, так как могут служить местами концентраций напряжения. При переменной нагрузке эти включения часто облегчают возникновение трещин усталости.  [c.131]

Все больше внимания уделяют повышению прочности сварных конструкций, работающих при динамических и, в частности, переменных нагрузках, в условиях низкой и нормальной частоты, различных сред. Главное внимание уделяют повышению прочности сварных соединений и конструкций, работающих при переменных нагрузках определение методов термообработки, повышающих предел текучести материала устранение концентраторов при проектировании, путем технологической обработки — приданием рациональных очертаний швам в ЦНИИТМАШ, ИЭС им. Е. О. Патона разработаны различные методы механической поверхностной обработки сварных соединений (дробью, пучком проволок, взрывом и т. д.), повышающие предел выносливости сварных соединений при дуговой сварке в 2 раза, при точечной — более чем в 3 раза.  [c.15]


Существует несколько предельных состояний, ограничивающих возможность нормальной эксплуатации конструкций. Первое расчетное предельное состояние определяется несуще и способностью конструкции ее прочностью, устойчивостью, выносливостью при динамических и переменных нагрузках. Второе расчетное предельное состояние обусловлено наибольшей деформацией конструкции прогибами при статических нагрузках, колебаниями при динамических. Третье расчетное предельное состояние характеризуется максимально допустимыми местными повреждениями, например, величиной раскрытия трещин, коррозией и т. п. В большинстве случаев расчет металлических конструкций производится по первому предельному состоянию — по условию прочности, однако в отдельных случаях размеры частей конструкции устанавливают в зависимости от предельно допустимых деформаций. При этом расчет производится по условию жесткости.  [c.31]

Прочность при динамически переменных нагрузках. Из изложенного в 59 видно, что динамические напряжения во многих случаях изменяются во времени периодически, многократно достигая наибольшей и наименьшей величины при больщой скорости изменения. Изменение напряжений от некоторого сгтах до Отш и снова до Сттах называют циклом напряжений. Поэтому динамические напряжения, изменяющиеся описанным выше образом, называют динамически переменными или циклическими. Как было установлено еще в первой половине XIX века, действие достаточно большого числа циклов таких напряжений вызывает разрушение при напряжениях, значительно меньших временного сопротивления. Это разрушение принято называть уста лостным разрушением. Первоначально усталостные разрушения связывали со структурными изменениями, происходящими при циклических напряжениях. В настоящее время установлено, что эти разрушения объясняются постепенным нарастанием местных нарушений прочности, образующихся вследствие концентрации напряжений вблизи внутренних факторов концентрации (дефекты структуры). Окончание такого процесса, носящего в основном характер местных сдвигов, сводится к настолько значительному росту образующейся трещины, что напряженное состояние приобретает объемный характер, и происходит хрупкое разрушение.  [c.442]

Одним из способов повышения прочности болтового соединения при переменных нагрузках является применение болтов с высокой упругой податливостью, а следовательно, и динамической прочностью. С этой целью диаметр стержня болта иногда у меньшают до 0,8 ] (см. рис. 3.23, а).  [c.293]

Характер распределения нагрузки между витками является одной из важных оценок совершенства динамически лагруженных резьбовых соединений. Практика показывает, что уменьшение нагрузки на первом витке приведет к столь же заметному повышению прочности соединений при переменной нагрузке.  [c.50]

Следует отметить, что механические свойства хромистых сталей существенно зависят от метода термообработки. Так, например, понижением температуры отпуска можно существенно повысить предел прочности и предел пропорциональности стали 2X13, однако при этом падают удлинение и ударная вязкость, что нецелесообразно для турбинных лопаток с их большими динамическими напряжениями от изгиба и переменной нагрузкой.  [c.156]

Шлицевое соединение — это многошпоночное соединение, в котором шлицы выполнены заодно с валом. Шлицевые соединения изготовляют с зубьями прямоугольной, эвольвентной и треугольной формы. По сравнению со шпоночными шлицевые соединения позволяют осуществить лучшее центрирование деталей, обеспечивают большую направленность и равномерность движения колеса вдоль вала, обеспечивают большую прочность соединения при динамических и переменных нагрузках, уменьшают величину с.чятия на гранях зубьев  [c.395]

Механизмы трубопрокатных станов с прерывистым движением ведомых звеньев (механизмы подачи заготовки на станах пильгер-ной прокатки, механизмы перемещения оправки на станах, прокатывающих трубы переменного сечения, механизмы поворота заготовки и др.) характеризуются высокими статистическими и динамическими нагрузками. Использование больших запасов прочности при расчете этих механизмов недопустимо, так как это приводит к увеличению размеров звеньев механизмов, их моментов инерции, что в итоге увеличивает нагрузки. Поэтому при расчете таких механизмов предъявляются повышенные требования к точности расчета.  [c.206]

При расчете на прочность рычагов и осей тормозов с электромагнитами следует вводить динамический коэффициент 1 5, учитывающий ударный характер приложения нагрузки при замыкании тормоза. Для тормозов с гидротолкателями и управляемых-= 1 для тормозов с короткоходовыми электромагнитами постоянного тока 1 ) = = 1,5 для тормозов с пружинным замыканием и электромагнитами переменного тока без демпферов — длинноходовыми г ) = 2, короткоходовыми — 1[) = 2,5. Запасы прочности при этом не менее 2,5 относительно предела текучести.  [c.271]

Требования к сварным соединениям. В соответствии с большим разнообразием назначений и условий работы приборов, весьма разнообразны и требования, предъявляемые к сварным соединениям, выполняемым контактной сваркой. К этим требованиям относится высокая и стабильная прочность при статической, вибрационной или динамической нагрузке при нормальной, низкой (иногда до —200° С и ниже), высокой (до 500° С и выше) или переменной температурах приемлевая герметичность при глубоком вакууме (до 10 —10 мм рт. ст. и менее) высоком (или значительно меняющемся) давлении хорошо проникающих газов (до 200— 300 кг1см и более) достаточная антикоррозийность при воздействии различных агрессивных сред высокая тепло- и электропроводность минимальная окислен-нос-ть, загрязненность, отсутствие на поверхности деталей прибора прилипших к ним частиц металла, сохранность плакирующего слоя, удовлетворительная точность геометрических форм и размеров (ничтожно малая деформация), правильное взаиморасположение деталей, точное размещение шва, отсутствие вмятин и заметного изменения сечения в месте сварки, минимальный нагрев свариваемых и соседних с ними деталей, благоприятная макро- и микроструктура (приемлемые размеры и правильное размещение литых ядер, отсутствие непроваров, пор, раковин, трещин, сильно перегретого металла, хрупки-х структурных составляющих). Многие соединения приборов должны удовлетворять одновременно нескольким из перечисленных требований,  [c.42]


Смотреть страницы где упоминается термин Прочность при динамически переменных нагрузках : [c.69]    [c.101]    [c.188]    [c.611]    [c.273]    [c.334]    [c.166]    [c.181]    [c.342]    [c.177]   
Смотреть главы в:

Краткий курс сопротивления материалов Издание 2  -> Прочность при динамически переменных нагрузках



ПОИСК



Нагрузка динамическая

Нагрузка переменная

Переменные динамические

Прочность при динамических и переменных нагрузках

Прочность при динамических и переменных нагрузках

Прочность при динамической нагрузке

Прочность при переменных нагрузках

Расчеты на прочность при переменных напряжениях и динамических нагрузках Основные параметры цикла и предел выносливости

Расчеты на прочность при переменных напряжениях и при динамических нагрузках Расчеты на прочность при переменных напряжениях



© 2025 Mash-xxl.info Реклама на сайте