Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы алюминиевые Повышение

Механические свойства алюминиевых жаропрочных сплавов при повышенных температурах  [c.596]

На линейную усадку влияют химический состав сплава, температура его заливки, скорость охлаждения сплава в форме, конструкция отливки и литейной формы. Так, усадка серого чугуна уменьшается с увеличением содержания углерода и кремния. Усадку алюминиевых сплавов уменьшает повышенное содержание кремния, усадку отливок — снижение температуры заливки. Увеличение скорости отвода теплоты от залитого в форму сплава приводит к возрастанию усадки отливки.  [c.123]


Для соединения цветных металлов, а также для присоединения мягких материалов к металлическим деталям применяют заклепки из меди, латуни, бронз, алюминия и алюминиевых сплавов. При повышенных требованиях к коррозионной стойкости заклепки делают из нержавеющих сталей, монель-металла, никелевых и титановых сплавов.  [c.198]

Рис. 204. Повышение температуры начала рекристаллизации алюминиевого сплава с повышением температуры деформации Рис. 204. Повышение <a href="/info/290061">температуры начала рекристаллизации</a> <a href="/info/29899">алюминиевого сплава</a> с <a href="/info/301572">повышением температуры</a> деформации
Такая же тенденция наблюдается при коррозии алюминиевых сплавов. При повышении температуры выше 60 °С повышается стойкость к коррозионной уста-  [c.110]

Используемое в промышленности естественное и искусственное старение сплавов, сопровождающееся выделением кристаллов новых фаз, является одним из основных методов улучшения определенных свойств некоторых сплавов, например повышения механической прочности алюминиевых, медных и никелевых сплавов, повышения жаропрочности никелевых, увеличения коэрцитивной силы медных сплавов и т. д.  [c.9]

Удельная прочность некоторых деформируемых алюминиевых и магниевых сплавов при повышенных температурах  [c.137]

Сортамент 258 ---из сплавов алюминиевых деформируемых — Механические свойства 18 — Механические свойства при различных температурах 54 — Механические свойства при растяжении при повышенных температурах 51 — Применения 74 --из сплавов алюминиевых деформируемых заклепочная — Механические свойства 35, 63 — Механические свойства при повышенных температурах 58 — Химический состав 17  [c.298]

Чистый Се не обладает химической стойкостью в атмосфере воздуха, воде и других средах. В сухом воздухе на чистом церии образуется окисная пленка, не защищающая нижележащий слой от окисления. Химически активен, особенно при повышенной температуре (150 С и выше) Чистый церий ковкий вязкий металл, хорошо обрабатывается давлением на холоде, пластичнее лантана, можно изготавливать листы и проволоку (методом прессования). При холодной обработке давлением обжатие до 25% вызывает наклеп, дальнейшая обработка не увеличивает наклепа. Легко об- Легирование черных и цветных металлов стали, легких сплавов (алюминиевых, магниевых сплавов), при котором осуществляется раскисление и одновременно повышаются прочность и пластичность. Основная составляющая мишметалла. В электровакуумной аппаратуре для получения высокого разряжения (газопоглотитель)  [c.354]


Алюминиевая бронза. Однофазные сплавы в системе медь—алюминий с содержанием до 9 % А1 отличаются высокой пластичностью и хорошо обрабатываются давлением. Двухфазные сплавы с повышенным содержанием алюминия имеют более высокие твердость и прочность, но пониженную вязкость в холодном состоянии. Алюминиевая бронза имеет хорошие литейные свойства она жидкотекуча, не склонна к ликвации. Бронза морозо-стойка, немагнитна, но плохо поддается  [c.388]

Церий — мягкий металл серо-стального цвета. Плотность 6,66 г/сж , температура плавления 795° С, кипения 3468° С. Окисляется во влажном воздухе, при 160—180° С воспламеняется и горит ослепительным пламенем. Основной компонент мишметалла. Применяется для повышения долговечности сплавов с высоким омическим сопротивлением, износостойкости электроконтактных сплавов, для повышения качества алюминиевых (в том числе вторичных), магниевых и других сплавов, для образования чугуна с шаровидным графитом и т. д. (табл. 63).  [c.108]

Торий — мягкий металл серовато-белого цвета. Плотность 11,7 г/см , температура плавления 1750° С, кипения 3.500—4200° С. Обладает хорошей пластичностью — куется и прокатывается без нагрева. На воздухе покрывается тонкой пленкой окиси. Применяется для легирования стали, алюминиевых и магниевых сплавов, для повышения прочности твердых сплавов, повышения сопротивления ползучести некоторых легких сплавов и т. д.  [c.196]

П. Характеристики механической прочности алюминиевых сплавов при повышенной температуре (в С) в кГ/мм  [c.480]

Алюминиевый сплав с повышенным пре- 39 330 2,2  [c.432]

Поршневые литейные алюминиевые сплавы. Алюминиевые сплавы нашли широкое применение для поршней, особенно автомобильных. По сравнению с серым чугуном они обладают рядом преимуществ высокой теплопроводностью, низким удельным весом и хорошей обрабатываемостью. Однако чугунные поршни в тяжелых условиях работы (например, в тракторах) показывают большую износостойкость, чем алюминиевые, у которых, кроме того, скорее возможно заедание в чугунных цилиндрах вследствие более высокого коэффициента теплового расширения. Поршни из силуминов с повышенным содержанием кремния имеют более низкий коэффициент расширения, что позволяет без опасений уменьшать зазор между поршнем и стенкой цилиндра. Наконец, алюминиевые поршни дороже чугунных.  [c.434]

Алюминиевые и магниевые сплавы. Самую большую группу алюминиевых отходов составляет стружка. Ее массовая доля в общем количестве отходов достигает 40%. К первой группе отходов алюминия относят лом и отходы нелегированного алюминия во вторую группу — лом и отходы деформируемых сплавов с низким содержанием магния [до 0,8% (мае. доля)] в третью — лом и отходы деформируемых сплавов с повышенным (до 1,8%) содержанием магния в четвертую — отходы литейных сплавов с низким (до 1,5%) содержанием меди в пятую — литейные сплавы с высоким содержанием меди в шестую — деформируемые сплавы с содержанием магния до 6,8 % в седьмую — с содержанием магния до 13% в восьмую — деформируемые сплавы с содержанием цинка до 7,0% в девятую — литейные сплавы с содержанием цинка до 12 % в десятую — остальные сплавы.  [c.312]

Экспериментальные и теоретические исследования растяжения образцов алюминиевого сплава при повышенных температурах и больших деформациях с постоянными скоростями обычной деформации и условного напряжения описаны в работе [41].  [c.71]

Аналогично описанным выше исследованиям растяжения образцов алюминиевого сплава при больших деформациях было проведено изучение сжатия образцов этого сплава при повышенных температурах и больших деформациях [51 ]. При этом так же, как и в случае растяжения, испытания проводились при постоянной силе (ползучесть) и при постоянных скоростях обычной деформации и условного напряжения. Кривые ползучести при сжа-  [c.75]

Номенклатура товарной продукции литейных отделений из года в год расширяется основные ее виды — алюминий в чушках (ГОСТ 11070 — 74), слитки плоские для проката (ГОСТ 9498— 71), катанка (ГОСТ 13843—68), цилиндрические слитки (ГОСТ 19437—74), слитки для проволоки (ГОСТ 4004—64), алюминиевые шины, рулонная заготовка, силумин и другие виды литейных сплавов. Для повышения эффективности использования алюминия в народном хозяйстве номенклатура товарной про,дукции электролизных цехов все больше изменяется в сто-324  [c.324]


В некоторых случаях для изготовления цилиндров применяют также трубы из алюминиевых сплавов. Для повышения поверхностной твердости рабочего зеркала цилиндра из алюминиевых сплавов применяют хромирование их электролитическим способом с толщиной хромового покрытия до 0,2 мм.  [c.288]

В отличие от алюминиевых, магниевые сплавы в жидком состоянии практически не привариваются к рабочим поверхностям пресс-формы, что резко снижает эрозию матриц и повышает их стойкость более чем на 50%. Магниевые сплавы обладают меньшей жидкотекучестью и хуже заполняют форму, чем сплавы на основе алюминия, цинка, меди. Это затрудняет получение отливок с очень тонкими стенками. Кроме того, магниевые сплавы имеют повышенную склонность к образованию горячих трещин в местах затрудненной усадки, что требует более тщательной отработки технологических режимов литья.  [c.29]

На фиг. 39 показано изменение предела прочности важнейших алюминиевых сплавов ьри повышенных температурах. Кратковременным испытаниям предшествовал нагрев в течение 1 часа. Этими данными можно пользоваться только тогда, когда отливаемое из соответствующего сплава изделие ис> пытывает кратковременное нагружение, продолжительность которого исчисляется минутами, а предварительный нагрев при рабочей температуре не превышает 1 часа.  [c.67]

Разрушение детали из высокопрочного, относительно малопластичного алюминиевого сплава В95 в состоянии фазового старения произошло при статической нагрузке на 20% ниже расчетной. Место начала разрушения не совпадало с наиболее напряженным в детали по расчету. Разрушение произошло вдоль волокна по сечению, которое соответствовало галтельному переходу, выполненному с малым радиусом в галтельном переходе имелись следы грубой механической зачистки (рис. 30). Кроме того, в сплаве содержалось повышенное количество железа и кремния — элементов, образующих хрупкие интерметал-лидные фазы. Излом имел мелкоямочное, почти сотовое строение. Таким образом, к хрупкому преждевременному разрушению привело сочетание ряда неблагоприятных факторов наличие концентратора в сечении, обладающем пониженным сопротивлением возникновению и развитию разрушения, увеличенная жесткость концентратора из-за малого радиуса и наличия грубых рисок, повышенная чувствительность материала к хрупкому разрушению.  [c.50]

Оконный блок (рис. 70, в) имеет такие же размеры, как и деталь стены (500X2000 мм, 500X650 мм). Каркасом блока служит сложный профиль из алюминиевого сплава. Деталь потолка — перфорированная плитка (500x500 мм) из алюминиевого сплава. Для повышения звуко-и термоизоляционных качеств плитки сверху на нее кладется минеральная вата. Рабочая поверхность в местах установки светильников должна быть кратной размерам плитки потолка. Связующим звеном унифицированных деталей служит каркас из стального профиля больших номеров.  [c.132]

Сплавы применяются также в виде заклепок для средненагружаемых конструкций из алюминиевых сплавов с повышенной коррозионной стойкостью и для конструкций из магниевых сплавов.  [c.74]

Область применения редкоземельных металлов. Редкоземельные металлы относятся к числу дефицитных. Кроме производства магнитов они незаменимы и в ряде других производств. Окислы самария и гадолиния служат поглотителями тепловых нейтронов в ядерных реакторах. Многие редкоземельные металлы применяют в черной металлургии при производстве сталей и сплавов, а в цветной металлургии — как присадки к алюминиевым и магниевым сплавам для повышения их жаропрочности. Лантан, самарий, цезий и европий используют при производстве люминофоров. Ферроцерий и цериевый мишметалл (мишметалл, обогащенный церием) применяют в трассирующих снарядах. Европий, тербий и гадолиний используюГ в электронике, в производстве Люминофоров для цветных кинескопов н для защитных экранов рентгеновских установок.  [c.82]

Пудра алюминиевая комкованная (ГОСТ 10096—62) — полуфабрикат для изготовления спеченных и деформируемых алюминиевых сплавов, обладающих повышенными прочностными свойствами при 300—550° С. Порошок с насыпным весом 1 г1см . Состав 94% алюминия активного и 6—9% окиси алюминия (марка АПС-1), 91% алюминия активного и 9—13% окиси алюминия (марка АПС-2). Зерновой состав — остаток на сетках АПС-1 № 1,6 1% и К 09 10%, АПС-2 № 1,6 0,5% и № 09 6%.  [c.81]

Церий — мягкий металл серо-стального цвета. Плотность 6,76 г/см температура плавления 804° С, температура кипения 3600° С. Окисляется во влажном воздухе, при 160—180° С воспламеняется и горит ослепительным пламенем. Основной компонент мишыеталла. Применяется для повышения долговечности сплавов с высоким омическим сопротивлением, износостойкости электрокон-тактных сплавов, для повышения качества алюминиевых (в том числе вторичных), магниевых и других сплавов, для образования чугуна с шаровидным графитом и т. д. Выпускается в слитках массой 2—5 кг (РЭТУ 1014—62) двух марок (содержание, %) Се-Э-1 (Се не менее 98,98 и 1,0 сумма РЗМ) Се-Э-2 соответственно 97,97 и 2,0.  [c.197]

Более перспективна для разработки новых сплавов система Си—А1—Мп. Это положение основывается на ряде положительных свойств марганца как легирующего компонента. Введение марганца в алюминиевые бронзы повышает их прочностные и улучшает технологические свойства. Легирование марганцем способствует также повышению стойкости сплавов против кавитационного разрушения и наиболее полному раскислению меди в процессе выплавки бронзы. Химические составы и механические свойства бронз системы Си—А1—Mg, наиболее широко применяемых в отечественной и зарубежной промышленности, приведены в табл. I. 35. При этом следует отметить, что зарубежные сплавы системы Си— А1—Мп по составу практически не отличаются от отечественной бронзы Бр. АМц9-2. В мировой промышленности, таким образом, нашли применение сплавы, лежащие на диаграмме состояния системы Си—А1—Мп в области повышенного содержания алюминия при нижнем, ограниченном содержании марганца. В связи с этим в настоящее время преждевременно считать, что с точки зрения изыскания высокопрочных сплавов система Си—А1—Мп полностью исчерпана для дальнейших исследований. Определенный интерес представляет изучение свойств сплавов с повышенным содержанием марганца, который положительно влияет на уровень механических и технологических свойств легированных бронз. Алюминиевые бронзы с повышенным содержанием марганца, очевидно, могут найти себе применение как новые литейные и деформируемые сплавы. При этом для методически наиболее правильных изысканий необходимо более конкретное представление о медном угле диаграммы состояния системы Си—А1—Мп.  [c.86]


Материалы червяков и червячных колёс. Червячное колесо. При скорости скольжения свыше 2 м/сек в качестве материала червячного колеса обычно применяется фосфористая бронза ОФ 10-1. Можно также применять малооловянистые и безоловянистые бронзы с пределом прочности на разрыв менее 30—35 KzjMjifi, а также алюминиевые, магниевые и цинковые сплавы. При повышенных нагрузках (мощностях) можно применять фосфористую бронзу, отлитую в кокидь, фосфористую бронзу, ОНФ, отлитую центробежным способом, и никелевую бронзу или сурьмяно-никелевую бронзу (7 — в /о Sb  [c.353]

Деформируемые сплавы. Для повышения механических свойств изделий изготавливаются алюминиевые сплавы, легированные различными элементами (Си, Мп, Si, Mg, Zn и др.). ГОСТ 1131-76 регламентирует химический состав и размеры чушек, предназначенных для изготовления слитков, обрабатываемых давлением и используемых для подшихтовки при получении этих сплавов. Требования указанного ГОСТа распространяются в первую очередь на предприятия по производству первичного и вторичного алюминия, которые поставляют свою продукцию на те предприятия, которые из этих сплавов изготавливают слитки, пригодные для дальнейшей обработки давлением (прокатка, волочение, штамповка, экструзия и пр.).  [c.22]

Электрическая проводимость отожженного алюминия чистотой 99,6 % составляет 62 % проводимости отжженной меди, а предел прочности проволоки из алюминия равняется 0,84— 2,04 МН/м в зависимости от степени отжига. При необходимости получения более высоких прочностньи характеристик используют сплавы с повышенным содержанием легирующих элементов (Si, Fe), проводимость которьи ниже примерно на 16—18 %. Для высоковольтных линий электропередачи используют алюминиевые провода, упрочненные стальной проволокой или со стальным сердечником.  [c.28]

Особенности технологии литья в коль цветных сплавов. СДри литье кокиль алюминиевых сплавов вследствие повышенной скорости затвердевания газоусадочная пористость подавляется, что способствует получению плотных отливок ) Положительно сказывается повышеш1ая скорость затвердевания на дисперсности структурных составляющих и фазовом составе сплавов измельчается эвтектика, уменьшаются размеры и улучшается форма железосодержащих фаз. Однако кокиль хуже заполняется сплавом, чем песчаная форма, поэтому необходима повышенная температура металла при заливке (табл. 9). Улучшению за-полняемости способствуют также повышение температуры кокиля и применение покрытий с высокими теплоизолирующими свойствами. Большое значение имеют условия теплообмена между отливкой и кокилем для алюминиевых сплавов с широким температурным интервалом затвердевания.  [c.334]

Наибольшее применение нашли сплавы системы Mg - А1 - Zn, особенно сплавы с повышенным содержанием алюминия. Для сплавов этой системы характерен более широкий, чем у алюминиевых сплавов, интервал кристаллизации. В результате они обладают пониженной жидкотеку-честью, усадочной пористостью и низкой герметичностью, склонностью к образованию горячих трещин. С увеличением содержания алюминия литейные свойства сначала ухудшаются, поскольку увеличивается интервал кристаллизации, а затем при появлении неравновесной эвтектики — улучшаются повышаются прочностные характеристики. Однако из-за большого количества интерметаллидных фаз, в том числе и эвтектических (рис. 13.14), сплавы с большим содержанием алюминия обладают пониженной пластичностью. Наилучшее сочетание литейных и механических свойств имеют сплавы, содержащие 7,5 - 10 % Ali(MJI5, МЛб). Небольшие добавки цинка способствуют улучшению технологических свойств. Гомогенизация цри 420 °С (12 - 24 ч) и закалка с этой температуры способствуют повышению прочности и пластичности. Вследствие малой скорости диффузии алюминия в магнии сплавы закаливаются при охлаждении на воздухе. Старение при 170 — 190 °С дополнительно повышает временное сопротивление и особенно предел текучести сплавов.  [c.381]

Общие рекомендации к сварным соединениям искать решения, позволяющие применять стыковые швы избегать резких изменений сечений в направлении по потоку сил и создавать плавные переходы, уменьшающ,ие опасность проявления концентраций при высокопрочных материалах не располагать швы в местах резкого изменения жесткости сечений, где концентрация напряжений неизбежна обеспечить возможность применения автоматической сварки для алюминиевых сплавов учитывать повышенную деформативность материала при сварке по сравнению со сталью, избегая жестких узлов со значительным скоплением швов.  [c.369]


Смотреть страницы где упоминается термин Сплавы алюминиевые Повышение : [c.644]    [c.202]    [c.293]    [c.295]    [c.299]    [c.100]    [c.89]    [c.271]    [c.447]    [c.102]    [c.362]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.74 ]



ПОИСК



18 — Механические свойства при из сплавов алюминиевых деформируемых заклепочная — Механические свойства 35, 63 — Механические свойства при повышенных температурах 58 — Химический соста

Коррозионная стойкость алюминия сплавов алюминиевых деформируемых 63, 64, 7], 72 — Влияние различных сред 73 — Повышение

Кравец А. Н., Крайнов А. С., Родин В. Ю., Федин А. В ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РЕЗКИ АЛЮМИНИЕВЫХ СПЛАВОВ КОМБИНИРОВАННЫМ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ

Литейные сплавы алюминиевые повышенной коррозионной стойкости

Литье под всесторонним газовым давлением — Влияние повышенного газового давления на форму 330 — Время затвердевания: отливок 330 слитков 331 — Заполняемость форм 329—331 — Особенности литья сплавов: алюминиевых

Механические свойства алюминия сплав алюминиевых деформируемых при повышенных температура

Повышение коррозионной стойкости алюминиевых сплавов

Повышение надежности и долговечности деталей из алюминиевых сплавов

Повышение надежности и долговечности паяных соединений деталей, изготовленных из алюминиевых сплавов

Прочность алюминиевых сплавов чугуна — Повышение — Способы

Сплавы Повышение

Сплавы алюминиево-медные АЛ 12 с повышенным содержанием меди

Сплавы алюминиевые деформируемы для работы при повышенных температурах

Сталь углеродистая обыкновенного качества. Сталь углеродистая качественная конструкционная. Сталь легированная конструкционСталь рессорно-пружинная углеродистая и легированная. Стали и сплавы высоколегированные. Сталь инструментальная углеродистая. Сталь конструкционная повышенной и высокой обрабатываемости резанием (автоматная) Алюминиевые сплавы



© 2025 Mash-xxl.info Реклама на сайте