Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серебро Электрические свойства

Электрические свойства некоторых чистых металлов приведены в табл. 27. Наилучшей проводимостью после серебра обладают медь и алюминий, они и являются наиболее распространенными проводниковыми материалами. Проводимость отожженного проводникового алюминия составляет приблизительно 62% проводимости стандартной меди, но плотность алюминия мала, поэтому проводимость 1 кг алюминия составляет 214% проводимости  [c.239]


В случае электроосаждения покрытий сплавом серебро-палладий достигается повышение коррозионной стойкости, твердости и износостойкости покрытия без ощутимого изменения электрических свойств, устраняется налипание на трущихся поверхностях, которое нередко приводит к сокращению срока службы и отказам контактных деталей с серебряным покрытием.  [c.103]

Высокооловянистую бронзу применяют для замены серебра при гальваническом покрытии некоторых типов контактов [28]. В этом случае следует учитывать электрические свойства покрытия, в особенности его электросопротивление.  [c.98]

Для повышения твердости, износостойкости и стойкости к потускнению серебряных покрытий в последние годы все шире используют электроосаждение сплавов на его основе. В табл. 5.46 приведены механические и электрические свойства покрытий серебром и его сплавами.  [c.272]

Легирование серебра другими металлами в большинстве случаев не приводит к повышению защитных свойств его в атмосфере сероводорода. В случае легирования серебра кадмием достигается стойкость к потускнению при содержании кадмия 75 %, но при этом резко ухудшаются механические и электрические свойства. И только при легировании серебра благородными металлами (65—75 % Аи 40—50 % Рд 40—50 % Р1) удается получить сплавы, обладающие высокой твердостью и износостойкостью, сравнительно небольшим и постоянным переходным сопротивлением, устойчивые к потускнению.  [c.273]

За последние годы наблюдается все большее сокращение применения серебра и золота в качестве декоративных покрытий и расширение использования их для технических целей в радиоэлектронной, приборостроительной, авиационной промышленности. Основной причиной такого положения является высокая электропроводимость и химическая стойкость этих металлов. Однако механические свойства их не всегда удовлетворяют требованиям, предъявляемым к изделиям, и необходимо принимать меры по их улучшению. Повышение твердости и износостойкости серебряных покрытий достигается легированием их другими металлами, взятыми в небольшом количестве, чтобы не ухудшить электрические свойства серебра. Некоторое улучшение этих свойств достигается также введением в электролиты органических соединений, в том числе блескообразователей. Износ серебряных покрытий, осажденных по медному подслою, больше, чем по никелевому. В условиях сухого трения серебро ведет себя хуже, чем золото, а при наличии смазки оба покрытия ведут себя одинаково.  [c.92]


Электролитические сплавы на основе золота, так же как и серебра, находят применение для декоративной отделки изделий и в производстве радиоэлектронной аппаратуры. Легирующими компонентами чаще всего являются никель, кобальт, медь, серебро. Некоторые сведения о влиянии этих добавок на свойства покрытий приведены в табл. 4.2 [68, с. 49]. Благоприятное действие добавок никеля и кобальта проявляется уже при очень малом их содержании. Введение в сплав даже долей процента этих металлов заметно повышает их износостойкость, по сравнению с чистым золотом. Соответственно такие количества легирующего металла вызывают лишь небольшие изменения электрических свойств покрытий. Эти обстоятельства привели к широкому распространению указанных сплавов при изготовлении электрических контактов. Покрытия с несколько большим содержанием никеля или кобальта используют для защитно-декоративной от-  [c.111]

Для растяжек и подвесов применяются нити из оловянисто-цинковой или бериллиевой бронзы, из сплава серебра с платиной, сплава кобальта с никелем и хромом. В особых случаях применяются кварцевые нити. В электроизмерительных приборах высокой чувствительности применяются нити, толщина которых не превосходит нескольких сотых долей миллиметра. Механические и электрические свойства материалов для растяжек и подвесов регламентируются ГОСТ 9444—60. Основными требованиями к материалам являются высокие антикоррозионные свойства, высокая стабильность механических характеристик. Указанным стандартом регламентируется и величина противодействующего  [c.597]

Известно, что американскими и западногерманскими фирмами для изготовления наконечников используются специальные сплавы на основе вольфрама или молибдена и серебра. Эти сплавы обладают лучшим сочетанием механических, тепловых и электрических свойств.  [c.155]

Опубликованные нами экспериментальные данные, собранные при исследовании электрических свойств хлористого серебра, сульфида серебра, гидроокиси алюминия и различных окислов марганца, никеля, железа и меди [1—3], свидетельствуют о том, что эти соединения являются твердыми электролитами, а температурная зависимость сопротивления изготовленных из них термисторов в общем случае определяется соотношением  [c.214]

При серебрении нередко используются высокие электротехнические свойства серебра (электрическая проводимость), а также его большое сопротивление сильно действующим химическим агентам.  [c.19]

Материалы по своему поведению в электрическом или магнитном поле подразделяются на проводящие, полупроводящие, диэлектрические (изоляторы), магнитные и немагнитные. Главное электрическое свойство вещества — это электропроводность, т. е. способность проводить электрический ток под действием постоянного (не меняющегося во времени) напряжения. Проводимость— мера этой способности. Обратная величина — сопротивление— измеряется в единицах СИ в Ом-м. Сопротивление— это такая физическая величина, которая, по-видимому, изменяется в наиболее широком диапазоне порядков. Например, вещества в сверхпроводящем состоянии практически не имеют сопротивления, тогда как сопротивление разреженных газов стремится к бесконечности. Сопротивление твердых материалов, с которыми мы будем иметь дело в этой книге, в нормальных условиях меняется в гигантском диапазоне в 25 порядков от 10 Ом-м для лучших металлических проводников, таких, как медь, серебро, алюминий, до 10 Ом-м для лучших диэлектриков, как некоторые полимеры. Мы будем придерживаться классификации, согласно которой вещества с сопротивлением меньше 10 Ом-м называются проводниками, больше Ю Ом-м — диэлектриками, а с сопротивлением из промежутка от 10- до 10 Ои-и —полупроводниками. На величину сопротивления вещества сильно влияют внешние условия, в частности давление и температура, и это нужно учитывать в этой условной классификации. Например, такой типичный полупроводник, как германий, при высоком гидростатическом давлении становится проводником, а при очень низкой температуре— " непроводящим материалом.  [c.19]

Очевидно, ни один из металлов в чистом виде не годится в качестве материала для электрических контактов. Разработанные для контактов сплавы, такие, как серебро — медь, серебро — кадмий и др., имеют по сравнению с металлами повышенную прочность и твердость, поверхность их не тускнеет, но их электро- и теплопроводность значительно ниже. Для получения требуемых характеристик контактов в сильноточных цепях разрабатываются композиционные материалы, которые сочетают высокую электро- и теплопроводность с высокими температурами плавления и кипения, или обладают ни.зкой смачиваемостью и низкими фрикционными свойствами, и т д. Свойства типичных композиционных материа-  [c.418]


Композиционные материалы, состоящие из тугоплавкого металла и серебра или меди, получают в основном тремя методами порошковой металлургии. Первый — спекание под давлением с пропиткой позволяет получать материал с наилучшими свойствами, наиболее стойкий к действию электрической дуги. Из этих материалов чаще всего производят электрические контакты. В этом методе порошок тугоплавкого металла смешивают со связующим веществом, которое может содержать пропитывающий металлический порошок, прессуют до достижения заданной пористости, спекают при высокой температуре для связывания частиц туго-14  [c.419]

Сплавы Серебро — кадмий образуют ограниченную область твердых растворов. Применяемые для контактов сплавы лежат в области -твердых растворов, т. е. это сплавы, богатые серебром. Добавки кадмия понижают температуру плавления, но повышают удельное электрическое сопротивление. Сплавы обладают весьма ценным свойством хорошо работать в дуговом режиме. Это обусловливается свойствами окиси кадмия (образующейся при нагреве сплава контактной дугой), которая при 900—1000 °С разлагается со взрывом, производя дугогасящее действие без нарушения контактной проводимости. Недостатком серебряно-кадмиевых контактов является значительная свариваемость и сплавление нх при больших токах из-за низкой температуры плавления сплавов. Этот недостаток устраняется при изготовлении контактов методом металлокерамики.  [c.298]

Сплавы серебро — медь (ГОСТ 6836— 72) образуют диаграмму состояния эвтектического типа с областями ограниченной растворимости, поэтому могут подвергаться старению. Старение может значительно повысить механические свойства сплавов. Для контактов применяют сплавы с содержанием Си до 50 %. Твердость и удельное электрическое сопротивление -и -твердых растворов растут с увеличением концентрации второго компонента, а температурный коэффициент сопротивления и теплопровод-  [c.298]

Палладий — серебро — кобальт (60— 35—5) — тройной сплав. Кобальт упрочняет сплав палладия, содержащий 40 % Ag, в который он вводится за счет серебра. Удельное электрическое сопротивление и эрозия близки к двойному сплаву палладия с 40 % Ая. По механическим свойствам (твердость и прочность) сплав близок к сплаву палладия с 18 % 1г.  [c.300]

Материалы высокой проводимости классифицируют по группам медь, сплавы меди с оловом (бронзы), сплавы меди с цинком (латуни), алюминий, серебро и прочие металлы и сплавы. В особую группу выделяют материалы для электрических контактов. В табл.1 приведены свойства наиболее распространенных металлов высокой проводимости.  [c.514]

Чистая медь обладает высокой электрической проводимостью (на втором месте после серебра), пластичностью, коррозионной стойкостью в пресной и морской воде, а также в ряде химических сред. Медь принято считать эталоном электрической проводимости и теплопроводности по отношению к другим металлам. Характеристики этих свойств меди оцениваются 100 %, в то время как у алюминия, магния и железа они составляют соответственно 60, 40 и 17 % от свойств меди. Медь обладает отличной обрабатываемостью давлением в холодном и горячем состоянии, хорошими литейными свойствами и удовлетворительной обрабатываемостью резанием.  [c.722]

Тепло, генерируемое при срабатывании контактов под воздействием электрических дуг и в замкнутом состоянии при прохождении электрического тока, должно интенсивно отводиться. Поэтому основными требованиями, предъявляемыми к контактам низковольтных средне- и тяжелонагруженных аппаратов, являются высокие тепло- и электропроводность, износоустойчивость против ударных механических нагрузок при достаточной дугостойкости и низкой склонности к свариванию. Для контактов этого типа аппаратов широко используются серебро, реже медь, сплавы на их основе, полученные методом порошковой металлургии. Отрицательные свойства серебра, такие как низкая прочность и износоустойчивость, высокая склонность к свариванию и к образованию мостиков, можно несколько уменьшить небольшими добавками легирующих элементов медь, кадмий, магний, кремний, никель, палладий. Эти добавки несколько снижают тепло- и электропроводность материала и практически не оказывают влияния на дугостойкость. Некоторые из этих металлов образуют с серебром стареющие сплавы, и после соответствующей обработки их прочностные характеристики, а также тепло- и электропроводность возрастают.  [c.153]

Названными свойствами - металлы обладают далеко не в одинаковой степени например, серебро и медь очень хорошо проводят электрический ток, а ртуть — плохо резко различаются металлы по способности подвергаться ковке и сварке и по другим свойствам.  [c.10]

Условия работы электрических контактов очень разнообразны, поэтому к ним предъявляются самые различные требования. Контакты, подвергающиеся истиранию должны обладать не только высокой износостойкостью и иметь низкое переходное сопротивление, но должны быть стойкими к атмосферной коррозии и к воздействию различных промышленных газов. Основными недостатками серебра, как контактного материала, является низкая износостойкость и способность образовывать на поверхности сульфидную пленку, плохо проводящую ток. Кроме того, уже при малой нагрузке серебро сваривается , что приводит к переносу металла с одного участка поверхности на другой, образованию наплывов и, как следствие, к нарушению контакта. Можно улучшить механические и физико-химические свойства серебра легированием его другими металлами. Наибольший интерес для контактов, работающих на истирание, представляют сплавы серебра с кадмием и сурьмой.  [c.59]

Перечисленные выше свойства серебра определяют области применения серебряных покрытий. Для повышения поверхностной электрической проводимости и максимального снижения переходного сопротивления серебрению подвергают токонесущие детали радиоэлектронной и электротехнической аппаратуры, в том числе приборов СВЧ. Благодаря высокой отражательной способности серебряные покрытия широко используют в производстве автомобильных фар и прожекторов, а благодаря красивому внешнему виду — для декоративных целей в часовой, ювелирной и легкой промышленности.  [c.263]


Метакриловые компаунды МБК и КМ-9. Общими характерными свойствам компаундов являются влаго- и водостойкость, отсутствие склонности к растрескиванию, хорошая адгезия, инертность по отношению к меди, серебру и другим металлам, прозрачность и бесцветность (без наполнителя). Под воздействием короны или электрической дуги проводящих мостиков не образуют. При. нагревании они несколько размягчаются, но не плавятся и при 220 С не теряют формоустойчивости.  [c.307]

Термисторы в основном можно разделить на бусинковые и дисковые. Бусинковые термисторы обычно изготавливаются следующим образом на определенном расстоянии параллельно друг другу укладываются платиновые проволочки, которые будут служить выводами, а затем с некоторым интервалом на эти провода наносят капли смеси окислов со связующим веществом. После спекания при 1300°С получается цепочка термисторов с готовыми выводами. После разделения на отдельные термисторы их покрывают стеклом такое покрытие не только увеличивает механическую прочность приборов, но и защищает термисторы от атмосферного кислорода, который, адсорбируясь в порах материала, изменяет концентрацию носителей тока в нем и его электрические свойства. Дисковые термисторы получают прессованием исходного порошка с последующим обжигом при 1100°С, а в качестве выводов на противоположные плоскости диска напыляют или наносят печатным способом слой серебра. Тот факт, что дисковые термисторы существенно менее стабильны, чем бусинковые, почти определенно объясняется тем, что поверхностные электроды уступают по своим электрическим свойствам электродам, введенным внутрь бусинки.  [c.244]

Электрические свойства КЭП. В результате исследования серебряных и медных покрытий было показано, что значения тепло- и электроироводимости КЭП имеют такой же порядок, что и значения этих величин для чистых металлов [1, с. 52]. При нагрузке 0,05—2 Н переходные сопротивления серебряных покрытий и покрытий серебро — корунд близки и составляют 0,5—1,5 мОм. Значения сопротивлений покрытий медь — графит, медь — дисульфид молибдена и медь — корунд были почти одинаковы со значениями сопротивления медных покрытий. При измерении сопротивления спеченных композиций Си—ВеО, Си—АЬОз Ag—AI2O3 было выявлено, что удельная электропроводимость материалов составляет соответственно 46—49 48—51 и 42— 52 МСм/м, в то время как для меди эта величина равна 58 МСм/с, а для серебра 62 МСм/м.  [c.105]

Ксерорадиографический метод. Для повышения производительности контроля и в целях экономии серебра создан метод получения изображения на фотополупроводниковых слоях из аморфного селена. Способ получения изображений на поверхности, электрические свойства которой изменяются под действием рентгеновского и -из-лучения, называется ксерорадиогра-фией, или электр орадиографией. Технология просвечивания паяных соединений этим методом аналогична технологии радиографического контроля. Ксерорадиографический метод контроля имеет преимущество в отношении производительности и стоимости, однако ксерорадиографические пластины не могут изгибаться, поэтому этим методом возможен контроль швов только на плоской поверхности изделий.  [c.363]

Ксерографией или электрорадиографией называют метод контроля, при котором в качестве детектора используют пластины, покрытые слоем вещества, изменяющего свои электрические свойства при воздействии рентгеновского и гамма-излучений. Ксерорадиография позволяет сократить расходы серебра, идущего на изготовление рентгеновской пленки, и повысить производительность контроля за счет того, что отпадает необходимость в обработке и сушке снимков.  [c.125]

По данным [46] на кривых изменения с составом электросопротивления, постоянной Холла и постоянных кристаллической решетки сплавов золота с серебром имеется разрыв непрерывности при составах, отвечающих химическим соединениям AuaAg, Au2Aga и AuAga. При исследовании внутреннего трения в сплавах, содержащих 58,5 и 68,0% Аи, был обнаружен температурный пик этой характеристики при 320°, который, по мнению авторов исследования [47], обусловлен упорядочением сплава под действием напряжений. Однако эти выводы опровергаются многочисленными исследованиями, выполненными различными методами физико-химического анализа (см. выше) и в том числе такими чувствительными, как рентгеновский, дилатометрический, магнитный, и измерением электрических свойств и термоэлектродвижущей силы. В ряде случаев определению свойств предшествовал длительный отжиг (7 суток) сплавов в интервале 700—1000° [7] и 850 часов при 600° [60].  [c.224]

Покрытие сплавами серебро—никель и серебро—кобальт Добавка уже небольших количеств (0,5—1 г/л) никеля или кобальта в. виде K2Ni( N)4 или КзСо(СЫ), в цианидный электролит серебрения заметно повышает его микротвердость и износостойкость серебра без заметного ухудшения электрических свойств. При этом содержание никеля и кобальта не превышает сотых— десятых долей процента.  [c.275]

Сравнительно длительная, но все же временная защита серебра от потемнения достигается обработкой его в неорганических или органических растворах. В первом случае используют главным образом хроматы, о чем рассказано в разд. 16.5. При подборе органических соединений необходимо учитывать, что формирующиеся защитные пленки должны быть тонкими, беспористыми, не препятствовать пайке и не ухудшать электрические свойства поверхности серебра. Помимо рекомендуемого ГОСТ 9.305—84 для этой цели ингибитора И-1-А, может быть использован водный раствор композиции на основе 2-меркаптобензотиазола с добавлением полиоксиэтиленового эфира алкилфенола и гидроксида аммония [60].  [c.93]

Одним из путей улучшения эксплуатационных характеристик гальванических покрытий является получение электролитических сплавов. Применительно к серебряным покрытиям в табл. 4.1 приведены данные о влиянии легирующих добавок сурьмы, палладия, никеля, кобальта, висмута на механические и электрические свойства осадков [68]. Данные по износостойкости даны по отношению к серебру, для которого она принята за 1. Увеличение содержания второго компонента в покрытии приводит к улучшению механических и некоторому ухудшению электрических характеристик. Очевидно, если последние в конкретном случае имеют определяющее значение, степень. шгирования должна быть невысокой. Из большого числа предложенных электролитических сплавов в оте-  [c.101]

Содержание в меди менее 0,2% серебра мало влияет на ее механические и электрические свойства (табл, 5-4-4), но несколько повышает температуру рекристаллизации (табл. 5-4-ЗА и рис. 5-4-6А) и опособствует образованию более мелких зерен (см. 6-3-1В). Скорость ползучести меди марки ЕТР с присадкой 0,1 % серебра при 225° С такова же, как и меди той же марки без лримеси серебра при 130° С.  [c.272]

Электрические контакты предназначаются для размыкания и замыкания ьлектрических цепей реле, магнето, регуляторов напряжения и других аппаратов. Благородные металлы и их сплавы обладают Biii oKOft температурой плавления и кипения, низкой упругостью паров и не окисляются на воздухе при высокой температуре. Поэтому они широко применимы во всех ответственных случаях. Самыми стойкими против коррозии являются снлавы на основе платины и золота. Сплавы палладия могут покрываться цветами побежалости при нагревании. Сплавы серебра тускнеют в присутствии сероводорода. В табл. 33 указаны составы, свойства и области применения металлов и сплавов для электрических контактов.  [c.437]


Керамические материалы могут быть весьма разнообразны по свойствам и области применения в электротехнике используют керамические материалы в качестве полупроводниковых (стр. 265) и магнитных (ферр1ггы, стр. 283) материалов. Чрезвычайно большое значение имеют керамические диэлектрические, в частности электроизоляционные, а также сегнетоэлектрические и некоторые другие специальные керамические материалы. Многие керамические электроизоляционные материалы имеют высокую механическую прочность, очень малый угол диэлектрических потерь, значительную нагревостойкость и другие ценные свойства. По сравнению с органическими электроизоляционными материалами керамика, как правило, более стойка к электрическому и тепловому старению, не дает остаточных деформаций при продолжительном приложении к ней механической нагрузки. Металлизация керамики (обычно нанесением серебра методом вжигания) обеспечивает возможность осуществления спайки с металлом, что имеет особое значение для создания герметизированных конструкций.  [c.169]

Медь и сплавы на ее основе. Медь обладает высокими тепло- и электропроводностью (на втором месте после серебра) и теплоемкостью, т. е. обладает комплексом свойств, 1 обеспечивающих хороший отвод тепла от контактов. Медные контакты меньше подвержены перегреву током даже по сравнению с серебряными (при отсутствии окисления). Медь недорога. Коррозионные свойства меди невысокие корродирует в атмосферных условиях с образованием оксидных и сульфидных пленок, которые могут приводить к нарушению проводимости контактов. При нагреве медь окисляется еще в большей степени, но образуемые при этом пленки легко разрушаются. При температуре мощной дуги происходит диссоциация окиси меди с обнажением медной поверхности — это предотвращает нарушение контакта. Твердость и прочность на разрыв, параметры дуги у меди выше, чем у серебра, она менее склонна к иглообразованию, но из-за окисления непригодна для маломощных контактов. Л1едь успешно можно применять в устройствах, работающих с большими механическими усилиями с притирающим или проскальзывающим действием (механическое разрушение окисной пленки), при высоких напряжениях (электрическое разрушение — пробой описанной пленки) — это различного рода контакторы и выключатели,  [c.302]

Контакты электрические металлокерамические (ГОСТ 13333—75 ) изготовляют на основе пористых заготовок вопьфрам-никелевых сплавов с пропиткой серебром (КМК-А60 и КМК-А61) и медью (КМК-Б20 и КМК-Б21). Свойства их приведены в табл. 7.  [c.210]

Цв том называют способность металла отражать падающие на него световые лучи, например медь красноватого цвета, алюминий серебристо-белого. Плотность характеризуется массой, заключенной в единице объема. Плавление — процесс перехода из твердого состояния в жидкое. Температура плавления железа 1535°С, олова 232°С, меди 1083°С. Теплопроводность — способность металлов поглощать тепло и отдавать его при охлаждении. Лучшей теплопроводностью обладают серебро, медь, алюминий. Теплопроводность учитывается в теплотехнических расчетах. Тепловое расширение — способность металла расширяться при нагревании сжиматься при охлаждении. Это свойство учитывают при строительстве мостовых ферм, железнодорожных путей, при изготовлении подшипников скольжения. Теплоемкостью называют способность мета-лла при нагревании поглощать определенное количество теплоты. Электропг.овод-ность — способность металла проводить электрический ток. Для токонесущих проводов используют ме,дь и алюминий с высокой электропроводностью, а в электронагревательных приборах и печах применяют сплавы с высоким электросопротивлением (нихром, константак, ман-  [c.14]

Одной из главных операций при изготовлении термопар является пайка или сварка термоэлектродов. При пайке контакт термоэлектродов осуществляется через материал припоя, т. е. в термоэлектрическую цепь входит еще один проводник. При сварке имеется непосредственный контакт термоэлектродов, но пограничная область между ними представляет собой сплав промежуточного состава. Однако т. э. д. с. термопары не зависит от того, сварены или спаяны ее термоэлектроды, если только весь спай находится при одной и той же температуре (см. гл. 4, 1). Предпочтительность пайки или сварки определяется целиком свойства [и термоэлектродов и припоя. Единственное требование, которое необходимо выполнять, — это обеспечение хорошего контакта термоэлектродов и достаточной прочности места контакта. Некоторые частные рекомендации сводятся к следующему практически любые термопары (платина-платиноро-диевая, железо-константановая, хромель-алюмелевая и т. д.) можно сваривать в пламени горелки с кислородным дутьем в случае термопар из неблагородных металлов сварка ведется под слоем флюса, например буры платина-платиноро-диевую термопару иногда сваривают при помощи электрической дуги (лучше постоянного тока) медь-константановую термопару можно паять как серебром, так и оловом. Перед пайкой (сваркой) термоэлектроды следует тщательно вымыть при монтаже термопар следует избегать изгибов, натяжений и других деформаций проволок.  [c.152]

Сравнительно широкое применение золотых покрытий для технических целей связано как с их химической стойкостью, так и с тем, что благодаря низкому переходному электрическому сопротивлению, стабильному во времени, при повышенной температуре и в жестких климатических условиях они больше, чем другие покрытия, способствуют надежной работе коммутационных элементов, которые широко используются в различных изделиях. Наряду с этим, необходимо учитывать некоторые специфические свойства золотых покрытий. Следует ограниченно применять их, если в дальнейшем покрытия подвергаются пайке, в особенности при повышенной температуре. Скорость растворения золота в припое П0С61 выше, чем серебра, меди, палладия. Оно образует с оловом интерметаллическое соединение, склонное к растрескиванию со временем, и поэтому такие паяные швы не при всех условиях будут достаточно надежными.  [c.103]

Гальванические покрытия металлами платиновой группы, пожалуй, больше, чем золото и серебро, имеют функциональное назначение. Хотя их удельное и переходное электрическое сопротивление выше, чем золота и серебра, стабильность последнего параметра в жестких условиях, включая повышенную температуру, стойкость против механического и эррозионного износа, а также хорошие антикоррозионные свойства делают платиновые металлы трудно заменимыми при изготовлении ряда изделий, в особенности коммутационных элементов. Защитные свойства покрытий определяются их пористостью и поэтому при разработке соответствующих технологических процессов особое внимание уделяется получению беспористых покрытий малой толщины. Последнее обстоятельство связано как с экономическим фактором, так и с тем, что вследствие больших внутренних напряжений, в особенности у родия, по мере увеличения толщины осадка в нем могут возникнуть микротрещины.  [c.184]

Для слабонагруженных контактов применяются чистые благородные металлы платина, палладий, серебро, золото, а также вольфрам и молибден. Платина на воздухе не окисляется и не склонна к образованию дуги, но склонна к образованию мостиков и игл при малых токах платина чаще применяется в сплавах с другими металлами, в частности с иридием — для наиболее ответственных прецизионных контактов. По ряду свойств к платине близок палладий он значительно дешевле платины и часто применяется вместо нее, хотя и несколько менее стоек против катодного распыления и окисления в воздухе. Широко применяются сплавы палладия с серебром. Золото весьма склонно к дугообразованию и эрозионному переносу оно применяется главным образом в сплавах с платиной, серебром, никелем. При применении чистого серебра следует учитывать его склонность к образованию дуги. Объемный перенос на серебряных контактах меньше, чем у платины и золота, что связано с окислением серебра в воздухе под влиянием электрических разрядов. Окислы серебра легко диссоциируют при сравнительно невысокой температуре (порядка 200°С), благодаря чему они очень мало влияют на стабильность контактного сопротивления. Тем не менее для прецизионных контактов с очень малым контактным давлением серебро не рекомендуется. В остальных случаях серебро широко применяют как в чистом виде, так и в сплавах с медью. Серебро очень интенсивно реагирует с серой, поэтому не следует применять серебряные контакты вблизи с серосодержащими материалами, например резиной.  [c.299]


Смотреть страницы где упоминается термин Серебро Электрические свойства : [c.22]    [c.418]    [c.139]    [c.31]    [c.138]    [c.320]    [c.87]    [c.258]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.275 , c.279 ]



ПОИСК



Серебро

Серебро Свойства

Электрические свойства



© 2025 Mash-xxl.info Реклама на сайте