Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Олово Физические свойства

Оловянистые бронзы представляют собой сплавы медь—олово, отличающиеся высокой прочностью. Сплавы, содержащие более 5 % Sn, особо устойчивы к ударной коррозии. По сравнению с медью сплавы медь—кремний, содержащие 1,5—4 % Si, имеют лучшие физические свойства и идентичны по стойкости к общей коррозии. При содержании 1 % Si стойкость сплавов к КРН недостаточна, но у сплава с 4 % Si она становится вполне удовлетворительной [2]. Проведенные в Панаме испытания в морской воде показали, что наиболее стойкими из всех медных сплавов является сплав А1—Си с 5 % А1. Потеря массы этого сплава при испытаниях в течение 16 лет составила 20 % от соответствующей потери меди [15].  [c.330]


Механические и физические свойства малооловянистых припоев, содержащих 10—20% олова  [c.349]

Физические свойства 250, 251 Олово металлургическое 253  [c.296]

Олово суш,ествует в двух модификациях обычное белое олово тетрагональной системы, устойчивое при температуре 13,2° С и выше, и серое олово кубической системы, устойчивое ниже указанной температуры. Физические свойства олова приведены в табл. 20, а механические — в табл. 21.  [c.210]

Физические свойства олова  [c.212]

В качестве теплоносителей используют металлический литий, натрий, калий, ртуть, олово, сплавы натрия с калием и свинца с оловом или висмутом, имеющие низкие температуры плавления и другие важные физические свойства. Могут найти применение рубидий, цезий, галлий и индий. Особый интерес для ядерной техники представляют щелочные металлы (литий, натрий, калий и сплавы натрия с калием).  [c.5]

Сложные медноцинковые сплавы, содержащие специальные присадки, которые сообщают сплавам повышенные механические и физические свойства, называются специальными латунями. В качестве присадок применяют олово, марганец, никель, алюминий, железо, кремний и др.  [c.44]

Применение керамического флюса дает возможность вводить в сварочную ванну модификаторы, позволяющие регулировать процессы кристаллизации и физические свойства наплавленного металла. Хорошие результаты дает способ сварки в защитных газах (аргона, гелия), особенно при сварке малых толщин. Сварку проводят вольфрамовым электродом на постоянном токе прямой поляр-, ности. В качестве присадочного металла применяют прутки из меди, содержащей кремний, олово, марганец.  [c.498]

Сплавы меди с цинком носят общее название латуней. Добавки олова, марганца, никеля, алюминия, железа и другие сообщают сплавам повышенные механические и физические свойства. По технологическому признаку латуни разделяются на литейные и на обрабатываемые давлением. В табл. 47 и 48 приведены химический состав н механические свойства литейных латуней.  [c.86]

Крацевание способствует равномерному распределению гальванических осадков и улучшает их физические свойства. Этот процесс применяют также для улучшения качества покрытий большой толщины. Крацевание может служить промежуточной операцией при наращивании покрытий больших толщин из цветных (медь, олово, и др.) и благородных (серебро, золото) металлов.  [c.58]


Технология получения фольги вакуумным методом практически не отличается от технологии нанесения покрытий, различны лишь требования к адгезии конденсатов при нанесении покрытий она должна быть максимальной, а при получении фольги необходимо обеспечить условия для беспрепятственного отделения конденсата от подложки. В лабораторных условиях [229] была получена фольга высокой степени чистоты с хорошими физическими свойствами из титана, циркония, тантала, ниобия, молибдена, меди, свинца, цинка, алюминия, латуни, нержавеющей стали и сверхпроводящего сплава ниобия с оловом. Толчком к переходу от лабораторных исследований к промышленному производству  [c.255]

Физические свойства олова при высоких температурах  [c.459]

Физические свойства отдельных компонентов цветных сплавов приведены в табл. 52 В настоящее время для фасонного литья находят применение главным образом сплавы, основой которых служат магний, алюминий, медь и цинк. Меньшее применение для фасонного литья находят металлы на основе никеля, серебра, олова и свинца. В ближайшее время можно ожидать распространения сплавов на основе марганца.  [c.40]

В предыдущей работе [9] были изложены результаты исследования некоторых физических свойств сплавов на основе ванадия, а в данной статье сообщаются экспериментальные данные об окислении ванадия и его двойных сплавов с титаном, хромом, алюминием и оловом в интервале концентраций их от 2 до 25 вес.% при температуре 600° С.  [c.63]

Гетерогенными называются системы, которые состоят из нескольких физически однородных, или гомогенных, тел, так что внутри систем имеются разрывы непрерывности в изменении их свойств. Эти системы представляют собой совокупности или различных агрегатных состояний одного и того же вещества (лед — вода, вода — пар и т. д.), или различных кристаллических модификаций (серое и белое олово и др.), или различных продуктов взаимного растворения (водный раствор соли — твердая соль — пар), или продуктов химического взаимодействия различных веществ (жидкий сплав и твердое химическое соединение двух металлов).  [c.22]

Физические и механические свойства олова  [c.310]

Физические и механические свойства олова следующие  [c.310]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]


Олозянистые бронзы представляют собой сплазы меди с оловом, а также более сложные сплавы с добавками цинка, свинца, фосфора, никеля и др, Оловянистые бронзы по своим механическим, литейным и прочим физическим свойствам хорошо изучены и освоены промышленностью.  [c.106]

При добавлении к свинцу 0,05% или меньшего количества лития значительно улучшаются литейные и физические свойства свинца, который становится более вязким и твердым, сохраняя удовлетворительную пластичность. В то же время значительно повышаются предел прочности при растяжении и модуль упругости. Кроме того, присутствие лития в свинце обеспечивает более мелкозернистую структуру и замедляет рекристаллизацию. Гарре и Мюллер (391 сравнивали влияние добавок различных элементов, например меди, сурьмы, олова, никеля, цинка и магния, с влиянием добавок лития на размер зерен и твердость свинца. Результаты, полученные этими исследователями, ясно показывают, что из всех испытанных элементов литий придает свинцу наиболее мелкозернистую структуру и наибольшую твердость. Кох [72] предложил применять сплавы лития и свинца, особенно те, которые содержат небольшие добавки кадмия или сурьмы, для изготовления кабельных оболочек. Он установил, что свинец, содержащий 0,005% лития, имеет значительно более высокий предел прочности при растяжении по сравнению с чистым свинцом.  [c.367]

Reflowing — Оплавление. Плавление электролитического покрытия с последующим затвердеванием. Поверхность имеет внешний вид и физические свойства горяче-погруженной поверхности (особенно олово или покрытия из сплавов на его основе). Также называется приданием блеска путем оплавления.  [c.1028]

Рис. 2. Зависимость характерна стнк физических свойств сплавов системы олово—свинец от состава Рис. 2. Зависимость характерна стнк <a href="/info/57679">физических свойств сплавов</a> системы <a href="/info/604581">олово—свинец</a> от состава
Нанесёние на металл покрытия в ванне расплавленного металла — ЭТО самый старый и самый дешевый метод нанесения защитных покрытий. Ему сопутствует одно принципиальное ограничение — наносимый в качестве покрытий металл или сплав должен иметь сравнительно низкую температуру плавления, при которой металл-основа еще не меняет своих физических свойств. Этот метод используется для нанесения покрытий из олова, цинка, свинца и алюминия на сталь (реже — на чугун) и на медь.  [c.195]

Таким образом было изучено несколько жидких,металлов, свинец [31, с. 275 32—34], олово [31, с. 237 33 34] и натрий [31, с. 227 37], а также вода [27], Литературные данные все еще значительно различаются в отношении точного толкования (интерпретации) и значения результатов, но можно сделать несколько качественных заключений. Оказывается, что в жидкости, как и в твердом теле, существуют колебания атомов, обладающие большой энергией, а распределение частоты колебаний в обоих состояниях одинаково. Жидкость имеет размытый дебаевский спектр, который постепенно становится все менее четким при нагревании. Из этого следует, что температура Дебая при плавлении изменяется лишь незначительно, что подтверждается наблюдениями, показывающими пренебрежимо малое изменение теплоемкости при плавлении большинства металлов. Предполагается также, что диффузия в жидкостях не может быть представлена ни простой моделью свободной диффузии, подобной диффузии в газе (за исключением, возможно, при очень высоких температурах жидкости), ни механизмом скачкообразной диффузии, как в твердых телах такой вывод впервые сделал Нахтриб [209]. Был предложен вариант, основанный на групповой модели диффузии в жидких металлах [27, 36] подобная модель независимо была предложена мной [332]. Глобулы или группы, как полагают, содержат около 100 атомов (см. разделы 3 и 8) и позволяют качественно интерпретировать другие физические свойства (сМ. раздел 9). Вычисленные из модели Эгельштаффа константы диффузии прекрасно совпадают с экспериментальными [27].  [c.20]

Предплавлеиие, предсказанное Борелиусом, найдено в нескольких органических материалах и нескольких тио-цианатах происходит предварительный распад структуры перед плавлением [559]. Уже говорилось об увеличении концентрации вакансий в щелочных металлах ниже точки плавления. Карпентер [562, 563J сообщает об аномальном поведении удельной теплоемкости у лития, калия и натрия в интервале температур на 50— 100 град ниже точки плавления, возможно, вызываемом образованием вакансий. Сообщается о подобной же странности в физических свойствах висмута, цинка, кадмия [565], олова, кадмия [566], магния [566, 567], индия, калия [568] и алюминия, золота и серебра [569]. Несомненно, некоторые из этих аномалий связаны с местным плавлением, вызываемым примесями [573, 574] (образование частиц жидкости в твердой фазе не представляет проблемы, так как при этом увеличивается энтропия), которые стремятся скопиться в уже отчасти разупорядо-ченных местах решетки (дислокации и скопление дефектов).  [c.159]

Как показывают исследования физических свойств, антиизо-морфные соединения с увеличением молекулярного веса становятся более металлическими. Заключение о преимущественно ковалентном типе химической связи и незначительном вкладе ионной составляющей в случае MgaSn подтверждается тем, что расплав этого соединения имеет проводимость того же порядка, что и жидкое олово (Уэллс [106а]). Изменение свойств в зависимости от изменения молекулярного веса изоструктурных соединений, содержащих элементы подгрупп IVB — VIB, уже обсуждалось более подробно в предыдущем разделе, касающемся полупроводниковых промежуточных фаз.  [c.272]

Двойные медиоцинковые сплавы обладают хорошими механическими и технологическими свойствами. Добавки олова, марганца, никеля, алюминия, железа и др. сообщают сплавам повышенные механические и физические свойства.  [c.226]


Для лужения применяют кислые и щелочные (станнатные) электролиты. В кислых электролитах ионы олова двухвалентные, в щелочных — четырехвалентные. Каждый из этих электролитов имеет свои преимущества и недостатки. В кислых электролитах можно применять значительно более высокую катодную плотность тока, чем в щелочных, и осаждать олово с выходом по току, близким к 100%. Электрохимический эквивалент олова в два раза больше, чем в щелочных электролитах. В целом скорость лужения в кислых электролитах в несколько раз выше, чем в шелочных. Наряду с этим кислые электролиты для лужения имеют ряд существенных недостатков малая катодная поляризация при осаждении олова, меньшая рассеивающая способность, чем щелочного электролита, крупнокристаллическое строение покрытий. Лишь при наличии в электролите поверхностно активных веществ образуются покрытия, удовлетворительные по физическим свойствам.  [c.156]

Свинец — безусловно вредная примесь в электролите, вызывающая образование хрупких осадков на катоде. На строение и другие физические свойства покрытия заметно влияют также пр имеси в электролите металлов кадмия, кобальта, олова, которые могут одновременно с медью разряжаться на катоде. Считают, что серебро даже в малых количествах отрицательно влияет на физические свойства покрытия.  [c.170]

Структура защитного покрытия, полученного по этому спо -собу, характеризуется наличием ряда слоев, различающихся между собой по составу и физическим свойствам. Каждый такой слой представляет определенного состава оплав, например железа с металлом покрытия внутренний слой наиболее богат железом, внешний слой его почти не содержит, а промежуточные слои тем менее обогащены железом, чем ближе они расположены к внешнему слою. Толщина отдельных слоев и покрытия в целом зависит от природы расплавленного металла, температуры ванны и времени выдержки изделия в ванне. Например, покрытие оловом состоит из нескольких очень гонких слоев, а при цинковании почти все покрытие представдает сплав железа с цинком.  [c.147]

Романова А. В., Лашко А. С. Рентгенографическое исследо-вгние строения жидких сплавов олово—свинец. Сб, Строение и физические свойства вещества в жидком состоянии . Киев, 1962.  [c.74]

Наиболее приемлемыми теплоносителями этого типа являются щелочные и тяжелые металлы и их сплавы натрий, калий, натриевокалиевый сплав, литий, висмут, ртуть, олово, сплавы висмута со свинцом и др. Физические свойства жидких металлов существенно отличаются от свойств обычных теплоносителей — воды, масла и др. У металлов больше удельный вес и коэффициент теплопроводности значение же теплоемкости ниже, особенно мала величина критерия Прандтля  [c.239]

Во многих случаях,— писал Менделеев,— настоит еще большое сомнение относительно места олементов, недостаточно исследованных и притом близких к краям системы так напр., ванадию, судя по исследованиям Роско, должно быть дано место в ряду азота, его атомный вес (51) заставляет его поместить между фосфором и мышьяком. Физические свойства оказываются ведущими к тому же самому определению положения ванадия так хлорокись ванадия УОСР представляет жидкость, имеющую при 14° удельный вес 1.841 и кипящую при 127°, что и приближает ее, а именно ставит выше соответственного соединения фосфора. Поставив ванадий между фосфором и мышьяком, мы должны бы были открыть таким образом в нашей предыдущей таблице особый столбец, ванадию соответствующий. В этом столбце, в ряду углерода, открывается место для титана. Титан относится к кремнию и олову по этой системе совершенно точно так, как ванадий к фосфору и сурьме. Под ними, в следующем ряду, к которому принадлежит кислород и сера, может быть нужно поместить хром тогда хром будет относиться к сере и теллуру совершенно так, как титан относится к углероду и олову. Тогда марганец Мп = 55 должно было бы поместить между хлором и бромом. Составилась бы при этом следующая часть таблицы  [c.115]

Полупроводники — это вещества, обладающие определенными физическими свойствами. К полупроводникам относятся углерод (в виде графита), бор, кремний, германий, форсфор, мышьяк, селен, теллур, олово, все окислы металлов и их сернистые соединения.  [c.180]

Кроме специальных применений в припоях и подшипниковых сплавах, рассмотренных выше, а также в качестве покрытий олово и его сплавы используют там, где оказываются полезными их физические свойства и прекрасная стойкость к потускнению и коррозин в почти нейтральных средах. Оловянные трубки применяют для конденсации пара при получении высокочистой дистиллированной воды, для перекачки пива и безалкогольных напитков (особенно по змеевикам, проходящим в охлаждающих средах), а также очень часто используют в органах. В оловянные тюбики упаковываются некоторые фармацевтические и пищевые продукты, а оловянная фольга на корковой подкладке применяется для закрывания банок и бутылок, Пьютер является очень удобным материалом для изготовлеиия декоративных изделий (как механическим способом, так и путем литья), но пз иего делают также кружки и тарелки,  [c.161]

Смеси ОВ. ОВ применяются как в виде индивидуальных веществ, так и в смесях с другими ОВ или с нейтральными в токсич. отношении веществами. Составление смесей преследует в основном следующие цели 1) изменить в благоприятную сторону физические свойства ОВ, как то понизить г° замерзания напр, смеси иприта с четыреххлористым углеродом или хлорбензолом), повысить или понизить упругость пара (напр, смесь фосгена с хлором для облегчения выпуска из баллонов), повысить плотность облака ОВ (напр, смеси фюсгена с хлорным оловом, синильной к-ты с хлористым мышьяком, хлорным оловом и хлороформом ИТ. д.) 2) создать комбинированный токсич. эффект (напр, немецкая смесь фосгена и дифенилхлорарсина ИТ. д.) 3) затруднить противнику распознавание химич. природы применяемого ОВ. По нек-рым данным совместное действие определенных ОВ может давать повышение токсич. эффекта по сравнению с действием каждого индивидуального вещества, так называемый синергизм ОВ).  [c.432]

ГСССД 149-90 Олово и оловянно-свинцовые припои. Физические свойства.  [c.67]

Дополнительная обработка оловянных покрытий. С целью приближения гальванических осадков олова по внешности и по физическим свойствам к покрытиям, полученным горячим способом, в некоторых случаях, например, при получении белой жести, проивв дят оплавление гальванических покрытий в специальных установках, посредством токов высокой частоты.  [c.72]

Химические и физические свойства окиси олова различны в зависимости от условий ее получения (осадители, pH раствора, температура растворов, затравки и т. д.). Представляет интерес определение параметров ячеек препаратов олова прецизионными измерениями с целью сравнения их между собой и с параметрами, приведенными в литературе. Рентгенограммы полученных препаратов практически не отличались друг от друга по величинам межпло-скостных расстояний, хотя резко отличались значениями интенсивностей дифракционных отражений. Для определения параметров было выбрано два препарата, резко отличающихся друг от друга по соотношению интенсивностей, но не отличающихся по химическому составу окись олова, осажденная 20%-ным раствором карбоната натрия при pH 9 окись олова, осажденная 30%-ным раствором аммиака при pH 6. Содержание олова в обоих случаях 87,6%. Для уточнения величин межплоскостных расстояний (с1) были получены рентгенограммы этих двух препаратов как со стандартом, так и без стандарта (в качестве стандарта использовали хлорид натрия ч. д. а.) (табл. 1).  [c.89]


Смотреть страницы где упоминается термин Олово Физические свойства : [c.239]    [c.177]    [c.55]    [c.1246]    [c.594]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.250 , c.251 ]

Чугун, сталь и твердые сплавы (1959) -- [ c.371 ]



ПОИСК



Олово

Олово — Свойства

Свойства Физические свойства

Свойства физические

Физические ПТЭ - Физические свойства



© 2025 Mash-xxl.info Реклама на сайте