Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизмы волновых передач

Механизмы волновых передач MB 2765-2771  [c.11]

М3 Механизмы волновых передач - - - - - - 2765—2771  [c.12]

МЕХАНИЗМЫ ВОЛНОВЫХ ПЕРЕДАЧ (2765—2771)  [c.533]

MB Механизмы волновых передач - - - - - - 638—644  [c.11]

МЕХАНИЗМЫ ВОЛНОВЫХ ПЕРЕДАЧ (638—644)  [c.517]

Относительно новый тип зубчатого механизма — волновая передача, с кинематической точки зрения аналогичная планетарным механизмам. Ее отличительная особенность заключается в том, что одно из звеньев является упругим, и его деформации используют для реализации процесса зацепления. Благодаря этому в зацеплении находится одновременно большое число зубьев. Передача получается плавной, бесшумной, точной, способной передавать большие моменты при больших передаточных отношениях и достаточно высоких КПД.  [c.79]


По структуре волновая передача, так же как и планетарная, является трехзвенным механизмом. Она может работать не только  [c.190]

В волновой передаче преобразование движения осуществляется путем деформирования гибкого звена. Этот новый принцип назовем принципом деформирования. Сущность этого принципа в том, что при волновом деформировании гибкого колеса всем его точкам сообщаются окружные скорости. При контакте гибкого колеса с жестким по гребням волн окружные скорости волновых перемещений сообщаются жесткому г.олесу (нлн гибкому), как ведомому звену передаточною механизма.  [c.193]

Волновая передача может быть двухступенчатой (рис. 15.20), В этом случае гибкое колесо / выполняется в виде кольца с двумя зубчатыми венцами z, и 23, которые входят в зацепление с жесткими колесами 2 и 4 с числами зубьев и соответственно). Жесткое колесо 2 неподвижно движение передается с помощью двух волновых зацеплений от вала генератора волн 3 жесткому колесу 4. Передаточное отношение многоступенчатой волновой передачи (рис, 15.20) определяется, как и аналогичного планетарного механизма, по формуле  [c.429]

Волновые передачи, подобно планетарным, могут быть использованы не только как редукторы или мультипликаторы, но и как дифференциальные механизмы. Их целесообразно применять во всех механизмах, где требуются большие передаточные числа, и в устройствах, где требуется высокая кинематическая точность и герметичность (например, для передачи движения через герметическую стенку, в химической, космической, атомной и других отраслях техники).  [c.371]

Волновые передачи кинематически представляют собой разновидность планетарных передач с одним гибким зубчатым колесом, поэтому для их кинематического исследования можно применить метод обращения движения. Если гибкое колесо 2 (см. рис. 20.7, а) будет выходным звеном, то, задавая мысленно механизму вращение со скоростью — ш , остановим водило И. Тогда передаточное отношение 21 обращенного механизма будет  [c.238]

В механизмах приборов и систем управления применяются как кинематические, так и силовые волновые передачи с модулем т = 0,2. .. 2 мм. В силовых передачах гибкие колеса изготовляют из высококачественных легированных сталей, а в кинематических передачах — из пластмасс.  [c.239]


Волновые передачи часто применяются в сочетании с зубчатыми или планетарными передачами. Такие передачи называются комбинированными. Волновые зубчатые механизмы в настоящее  [c.240]

При малой разности Аг чисел зубьев центрального колеса с внутренними зубьями и сателлита можно получить большое передаточное отношение. Обычно в таком механизме (табл. 14.1, п. 5) входным звеном при неподвижном звене 3 является водило. й, а выходным — звено /, связанное с осью сателлита 2 двойной муфтой. Однако конструировать и изготовлять такую передачу при малой разности зубьев колес сложно из-за несоосности колес 3 и 2. Эти трудности устраняются при использовании волнового зацепления (см. гл. 2). В таком механизме, называемом волновым (табл. 14.1, п. 6), сателлит 2 выполняют в виде тонкого деформируемого стакана, связанного со звеном 1. Под воздействием генератора волн, установленного на водиле /г, зубья на стакане входят в зацепление с зубьями центрального колеса 3. КПД волновой передачи, в отличие от передач с жесткими звеньями, может быть одинаково высок  [c.165]

Несмотря на молодой возраст волновые передачи (впервые они запатентованы в 1959 г.) применяются в самых различных устройствах в летательных аппаратах, атомных реакторах, в вакуумных установках, в механизмах приборов с высокой кинематической точностью, в различных механизмах строительной техники и т. д. Несомненно, что рациональное внедрение волновых передач в практику машиностроения и приборостроения несет с собой большую конструктивную и экономическую выгоду.  [c.470]

Волновые передачи можно применять как редуктор, мультипликатор, дифференциальный механизм и как вариатор скорости.  [c.190]

Принцип работы и основные параметры (рис. 11.4). Волновая передача состоит из следующих основных звеньев корпуса /, генератора волн Я, жесткого зубчатого колеса Ж и гибкого зубчатого колес Г. Одно из этих колес прикрепляется к корпусу механизма, а другое к выходному валу (рис. 11.4, а, 6). Гибкое колесо имеет форму тонкостенного цилиндра, длину которого I обычно делают не меньше диаметра. Генератор волн Н представляет собой водило с роликами (рис. 11.4, в, г) или кулачок (рис. 11.4, д).  [c.190]

Волновые передачи, подобно планетарным, могут быть использованы не только как редукторы или мультипликаторы, но и как дифференциальные механизмы. Их целесообразно применять в механизмах с большим передаточным числом, а также в устройствах со специальными требованиями к кинематической точности, инерционности и герметичности (например, в летательных аппаратах, атомных реакторах, химической промышленности, промышленных роботах, станкостроении, подъемнотранспортных машинах, приборостроении и других отраслях техники).  [c.228]

Волновая передача. Еще сравнительно недавно считалось, что деформации звеньев незначительны и не влияют на основные свойства механизмов. Однако в последние годы появились новые механизмы, само действие которых основано на деформации одного или нескольких звеньев. В качестве примера рассмотрим волновую передачу (рис. 9), предназначенную для передачи вращения через герметичную стенку, разделяющую пространства А я Б.  [c.33]

Применение. Волновые передачи применяют в промышленных роботах и манипуляторах, в механизмах с большим передаточным числом, а также в устройствах с повышенными требованиями к кинематической точности и герметичности.  [c.190]

До сих пор мы рассматривали движение деформируемого тела, модель которого сводится к качению волнообразно изогнутой гибкой нити, контактирующей с плоской опорой. Если качение гибкой нити происходит по неплоской, например цилиндрической, опоре, траектории точек нити и значения их мгновенных скоростей становятся отличными от траекторий и скоростей в случае плоской опоры. Для волновых передач, используемых в механизмах и машинах, характерно качение поперечных волн по цилиндрическим опорным поверхностям. Поэтому рассмотрим более подробно кинематику качения поперечной волны по выпуклой и вогнутой цилиндрическим поверхностям.  [c.102]


В волновых передачах непрерывного вращения скорость вершины волны гибкого колеса передается жесткому ведомому колесу. Из предыдущего анализа следует, что. в случае перемещения волны по плоской опоре передача движения ведомому звену, сцепленному с вершиной волны, невозможна так как скорость в последней, согласно выражению (2.3), равна нулю (линейная волновая передача по такой схеме неосуществима). Ниже будет показана возможность получения шагового движения ведомого звена, связанного с фиксированной точкой гибкой связи, подверженной волновому движению, и создания на основе такой схемы волновых шаговых механизмов как линейного, так и вращательного типов.  [c.104]

Прежде всего различными являются технически осуществимые способы создания бегущих поперечных и продольных волн на деформируемых телах (движителях), используемых в волновых механизмах. Если поперечная волна на гибком элементе в волновых передачах обычно создается обкатными роликами-генераторами, кулачками, магнитными силами, то образование бегущей продольной волны является, по-видимому, более сложной технической задачей. В качестве источника волновой деформации здесь могут использоваться такие явления, как тепловое расширение тел, пьезоэлектрический эффект, силы земного притяжения, механические воздействия и др.  [c.147]

Общие сведения. Волновая передача — это механизм, в котором движение между звеньями передается перемещением волны деформации гибкого звена. Волновая зубчатая передача (ВЗП) содержит Zj — гибкое колесо с внешними зубьями, выполненное в виде тонкостенного цилиндра, соединенного с тихоходным валом Z2 — жесткое колесо с внутренними зубьями, соединенное с корпусом h — генератор волн, состоящий из гибкого подшипника, напрессованного на овальный кулачок (рис. 11.32, й), или из двух больших роликов (дисков), расположенных на эксцентриковом валу.  [c.307]

По структуре волновая передача, подобно планетарной, является трехзвенным механизмом. Она может работать не только как редуктор или мультипликатор, но и как дифференциал.  [c.232]

Применять волновые передачи целесообразно в механизмах с большим передаточным отношением, а также в устройствах со специальными требованиями к герметичности, кинематической точности, инерционности и пр.  [c.254]

Принципиально новым зубчатым механизмом, передающим вращательное движение при помощи бегущей волновой деформации одного из зубчатых колес, является волновая передача.  [c.137]

Все ранее рассмотренные передачи являются механизмами с жесткими звеньями. Волновая передача содержит гибкое звено  [c.165]

В рассматриваемой конструкции волнового зубчатого редуктора ведущим звеном является генератор h, а ведомым — гибкое колесо g при неподвижном жестком Ь, т. е. передача типа h—Ь—g. Вообще говоря, в структурном и кинематическом отношениях волновая передача очень близка к планетарной передаче, которая имеет один сателлит g, соединенный с ведомым валом с помощью механизма параллельных кривошипов (см. рис. 5.1, а). Сопоставляя планетарную и волновую (рис. 5.6) передачи, отметим следующие общие свойства обе передачи — четырехзвенные механизмы, в которых колеса g обкатываются по колесам Ь звеньям buh планетарной передачи соответствуют звенья Ь н к волновой передачи, что позволяет говорить о том, что гибкое колесо волновой передачи является гибким сателлитом, а сама волновая передача — разновидностью планетарной. Однако такое определение можно принять условно, так как, несмотря на отмеченное сходство, волновая передача существенно отличается от планетарной прежде всего тем, что в волновой передаче нет звеньев с планетарным движением, которые являются основным признаком планетарных передач. В конструкции на рис. 5.6 планетарное движение совершает ролик генератора, но он не кинематическое звено, а только деталь генератора. Генераторы могут быть кулачковыми, электромагнитными и другими, в которых нет деталей с планетарным движением.  [c.168]

Механизмы коробок скоростей и редукторов Механизмы планетарных коробок скоростей и редукторов Механизмы дифференциальных коробок скоростей и редукторов Механизмы волновых передач Механизмы многозвенные общего назначения Механизмы для математических операций Механизмы грузоподъемных устройств Механизмы вибромашин и виброустройств Механизмы муфт и соединений Механизмы измерительных и испытательных устройств Механизмы тормозов Механизмы прочих целевых устройств МР МП МД MB м МО Гп 555—581 582—61 1 612-637 638-644 645—656 657—662 663-670  [c.10]

Механизмы коробок скоростей и редукторов МР (555—581). 2. Механизмы планетарных коробок скоростей и редукторов МП (582—611). 3. Механизмы дифференциальных коробок скоростей и редукторов МД (612—637). 4. Механизмы волновых передач MB (638—644). 5. Механизмы многозвенные общего назначения М (645—656). 6. Механизмы для математических операций МО (657—662). 7. Механизмы грузоподъемных устройств Гп (663—670). 8. Механизмы вибромашин и виброустройств Вм (671—673). 9. Механизмы муфт и соединений МС (674—675). 10. Механизмы измёрительных и испытательных устройств И (676—679). 11. Механизмы тормозов Тм (680). 12. Механизмы прочих целевых устройств ЦУ (681—689).  [c.443]


Механизм волновой передачи состоит из трех звеньев (рис. 80, а)-, двух зубчатых колес внутреннего зацепления / и 2 и волнообразователя 3. Внутреннее колесо 1 имеет меньщий на величину б диаметр делительной окружности, чем внешнее колесо, но такой же окружной модуль и шаг. Вследствие этого зацепление осуществляется за счет деформации одного из колес. Обычно деформации подвергается меньшее (внутреннее) колесо.  [c.137]

Основное распространение имеюг зубчааые волновые передачи с механическими генераторами волн и цилиндрическими колесами. В волновой механической передаче нреобра-ювание вращательного движения происходит вследствие волнового деформирования одного из звеньев механизма.  [c.168]

Волновая передача основана на принципе преобразования параметров движения вследствие волнового деформироваиия одного из звеньев механизма. Этот принцип впервые был предложен Москвити-ным в 1944 г. для фрикционной передачи с электромагнитным генератором волн (см. ниже), а затем Массером в 1959 г. для зубчатой передачи с механическим генератором .  [c.188]

Волновая передача состоит из трех основных элементов двух зубчатых колес (одногос внутренним, а другого с наружным зацеплением) и генератора волн, деформирующего одно из этих колес. На рис. 222, а показана принципиальная схема одноступенчатой волновой передачи. Генератор волн Н (обозначение по аналогии с планетарными механизмами) — вращающееся звено с двумя роликами деформирует гибкое звено — колесо а,., которое принимает форму эллипса. В зонах большой оси эллипса зубья гибкого колеса входят в зацепление с зубьями жесткого колеса на полную рабочую высоту, а в зонах малой оси полностью выходят из зацепления. Такую передачу называют двухволновой (по числу волн деформации гибкого звена в двух зонах зацепления). Очевидно, что передачи могут быть одноволновые, трехволновые и т. д. При вращении ведущего вала волна деформации гибкого звена перемещается вокруг геометрической оси генератора, а форма деформации изменяется синхронно с каждым новым его положением, т. е. генератор гонит волну деформации.  [c.349]

Волновые передачи в кинематическом отнощении имеют полную аналогию с планетарными механизмами. В этой связи можно определить передаточное отношение волновой передачи, воспользо-  [c.350]

Механнзмы подач и их приводы. К основным критериям механизмов подач (обычно шариковых, винтовых и волновых передач в современных станках с ЧПУ и многоцелевых станках, гидро-или пневмоцилиндров в ряде других видов оборудовани ) относятся равномерность подачи выходного звена, сохранение в про цессе работы заданного усилия подачи, жесткости (предварительного натяга), малое время восстановления скорости при реакции на нагрузку, влияющее на точность положения и стойкость инструмента, динамические характеристики. С учетом температурных деформаций эти свойства определяют также и технологическую надежность. Дополнительно к механизмам подач предъявляется требование защиты от перегрузок, что особенно актуально в условиях полной автоматизации работы технологических модулей ж мелкосерийного производства, когда технология не всегда достаточно отработана. Для ряда видов обработки важное значение имеет также такой критерий, как точность и время позиционирова-лия выходного звена — каретки или стола (более подробно эти вопросы рассмотрены в следующем разделе). Требования к приводу те же, что и у привода главного движения,— высокий КПД, уменьшение затрат времени на переключение подач, снижение динамических нагрузок на детали привода, шума и вибраций, обес печение высокой равномерности движения и надежности привода. Длительность сохранения технологической надежности станков существенно зависит от долговечности и свойств поверхностного слоя направляющих, винтовых пар и редукторов механизмов но-дач.  [c.27]

Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма. Впервые такая передача была запатентована в США инженером Массером.  [c.230]

ЦЗП А - привод,- составленный из одно- и многоступенчатых йилиндрических зубчатых передач или из планетарных передач Л . ЮЯ - коническая зубчатая передача ПРП — плоскоременная передача КРП (КШ) - клиноременная передача (корд-шнур) КРП (КТ) -клиноременная передача (корд-ткань) ЦП - цепная передача ЧЯ — червячная передача, ВП — волновая передача С - механизм С с одним (и , = 1) и тремя сателлита.чи (п = 3. см. рис, 6.1) 34 — механизм ЗА с двухвенцовым (ДС, см. рис. 6.2, ) и с одновенцовым  [c.201]


Смотреть страницы где упоминается термин Механизмы волновых передач : [c.14]    [c.434]    [c.23]    [c.275]    [c.455]    [c.466]   
Смотреть главы в:

Механизмы в современной технике  -> Механизмы волновых передач



ПОИСК



Волновые механизмы

Механизмы планетарных коробок передач и редукторов Механизмы дифференциальных коробок передач и редукторов Механизмы волновых передач

Передача волновая



© 2025 Mash-xxl.info Реклама на сайте