Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТРЕЩИНЫ В УСЛОВИЯХ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ

ГЛАВА 12. ТРЕЩИНЫ В УСЛОВИЯХ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ.......................................................... 799  [c.461]

ТРЕЩИНЫ В УСЛОВИЯХ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ  [c.799]

В работе [128] показано, что начально-краевая задача для тела с трещиной при учете контактного взаимодействия берегов может быть сведена к системе граничных интегральных уравнений и односторонним ограничениям в виде неравенств. Для упрощения там рассмотрена задача для трещины в неограниченной области при однородных начальных условиях. Покажем, что начально-краевая задача (3.1) —  [c.71]


Схожесть задач о контактном взаимодействии и задач механики разрушения состоит прежде всего в наличии точек с особенностями напряженного состояния. Это позволяет применять методы решения контактных задач теории упругости для решения отдельных задач механики разрушения, таких как определение поля напряжений у вершины трещин. Вместе с тем заметим, что нахождение коэффициентов интенсивности напряжений не есть механика разрушения, подобно тому как нахождение напряжений еще не определяет прочности изделия. И только формулировка и использование критериев разрушения, т.е. условий страгивания и роста магистральных трещин, составляет предмет механики разрушения. Некоторые приемы механики разрушения можно использовать при решении контактных задач. Например, корневую особенность в угловых точках штампа можно снизить (не прибегая к закруглению краев штампа), предполагая пластическое течение вдоль определенных линий скольжения. Допуская несколько таких линий или сплошной их веер можно устранить особенность вообще, как это описано в статьях В. 1У[. Александрова и Л. А. Кип-ниса [1, 2].  [c.624]

Важно отметить, что при контактном взаимодействии твердых тел характерна геометрическая локализация (непосредственно под площадкой контакта и вблизи нее) всех видов деформаций (упругой и пластической) и разрушения (зарождения и развития трещин). В таких условиях даже материалы, которые обычно являются хрупкими, проявляют пластические свойства в локальных зонах. Кроме того, пластическое деформирование приповерхностного слоя материала приводит к образованию поля остаточных напряжений, растягивающие компоненты которого оказываются причиной возникновения определенной системы трещин.  [c.625]

В заключении вводного пункта сформулируем некоторые приложения задач, решаемых методами механики контактного разрушения определение вязкости разрушения поверхностных слоев материала оценка уровня остаточных поверхностных напряжений определение параметров функций распределения поверхностных дефектов описание развития поверхностных и подповерхностных трещин, в том числе с изменением их траекторий описание взаимодействия системы трещин определение критериев выкрашивания фрагментов поверхностного слоя и оценка объема таких фрагментов построение на этой основе моделей изнашивания (многообразие реализуемых при этом условий нагружения многократно усложняет задачу).  [c.627]


Рассмотрим теперь возможные варианты граничных интегральных уравнений на поверхностях трещин й. Как правило, поверхности трещин в твердых телах свободны от нагрузки. Граничная задача с заданной нагрузкой на берегах трещины получается, например, если исходная задача для тела с трещинами, берега которых свободны от нагрузки, представляется в виде суперпозиции двух задач для тела без трещин и для тела с трещинами, к берегам которых приложена нагрузка полученная из решения первой задачи, взятая с обратным знаком (см. разделы 3.2 и 3.3). Нагрузка на берегах трещин возникает также при учете контактного взаимодействия берегов трещин. В первом случае на берегах трещин задаются граничные условия в напряжениях (вторая краевая задача), во втором — условия с ограничениями в виде неравенств (5.6) (задачи типа Синьорини). Ниже будет показано, что решение задачи Синьорини приводит к последовательности граничных задач в напряжениях. Учитывая это, предположим, что на берегах трещин задана поверхностная нагрузка и граничные условия имеют вид  [c.126]

По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС.  [c.26]

В настоящее время линейные задачи со смешанными граничными условиями благодаря важности их практических приложений и специфике методов их решения выделились в самостоятельный раздел механики сплошных сред. Этому способствовало и то обстоятельство, что конкретные задачи, с которыми приходится сталкиваться в теории упругости, гидромеханике, термодинамике, акустике и других областях математической физики, при надлежащей их постановке в основном оказываются смешанными. Смешанные задачи в теории упругости возникают при расчете различных деталей машин и элементов конструкций, находящихся во взаимодействии, при расчете фундаментов и оснований сооружений это все так называемые контактные задачи. Смешанными задачами также являются многие задачи концентрации напряжений в окрестности всевозможных трещин, инородных включений, подкрепляющих стрингеров и накладок, задачи изгиба пластин и оболочек при сложных условиях их опирания.  [c.3]

Добавление скручивающего момента к циклическому растяжению приводит к устойчивому изменению ориентировки фронта трещины. На начальном этапе трещина зарождается по всей длине надреза. Далее наблюдается разворот фронта трещины, и она имеет преимущественно уголковую форму фронта. Активное формирование скосов от пластической деформации сопровождается образованием продуктов контактного взаимодействия черного цвета. Продукты черного цвета являются следствием образования слоя графита за счет пиролиза углеводородных соединений из окружающей среды в зону сильного разогрева металла из-за контактного взаимодействия. Продукты контактного взаимодействия декорируют четко выявляемые усталостные бороздки. В слое графитоподобного вещества находятся продукты контактного взаимодействия. Они представляют собой частицы сферической и эллипсоидной формы. Эти частицы наблюдаются при развитии трещины в условиях  [c.652]


Извилистая траектория трещины рассматривается в качестве доказательства того факта, что смещение берегов усталостной трещины в ее вершине происходит не только в направлении приложения нагрузки при одноосном циклическом растяжении, но и по типу Кц — поперечное смещение берегов трещины [81], как это показано на рис. 3.15б. Оно вполне естественно в силу уже указанной выше неоднородности процесса формирования зоны пластической деформации вдоль всего фронта трещины. Ее формирование происходит в условиях реализации волнового процесса передачи энергии от одной зоны к другой. Поэтому неизбежно возникновение участков с наибольшей и наименьшей концентрацией энергии. Там, где реализован максимальный уровень энергии, имеет место подрастание трещины в локальном объеме после исчерпания пластической деформации [82]. В зонах фронта трещины с минимальной концентрацией энергии происходит запаздывание разрушения по отношению к другим зонам фронта трещины, что создает предпосылки к реализации эффекта мезотуннелирования трещины (рис. 3.16). Эта ситуация может определяться различиями локальных пластических свойств материала из-за различий пространственной ориентировки кристаллографических плоскостей от зерна к зерну. Такая ситуация, например, характерна для формирования фронта трещины в титановых сплавах (см. рис. 3.166). Процесс распространения усталостной трещины в срединных слоях материала вдоль вершины трещины оказывается сложным и связан с различными эффектами, в том числе и с эффектом изменения траектории трещины, ветвлением и мезотуннелированием. В результате этого реальная поверхность излома после распространения трещины является шероховатой, что создает предпосылки в процессе роста трещины для возникновения различных эффектов контактного взаимодействия ее берегов. Они препятствуют закрытию берегов усталостной трещины, что влияет на темп подрастания трещины.  [c.150]

Возникающая ситуация перед вершиной распространяющейся трещины и за ней оказывает различное влияние на развитие усталостной трещины при двухосном нагружении при различной ориентировке фронта трещины по отношению ко второй компоненте нагрузки. Это типично синергетическая ситуация в реакции материала на внешнее воздействие. В зависимости от того, какую роль играют внешние условия нагружения в кинетике усталостных трещин, материал имеет возможность задействовать различные механизмы разрушения, оказывающие влияние на скорость протекания процесса эволюции его состояния с распространяющейся усталостной трещиной. Добавление второй компоненты к нагружению по одной оси при благоприятной ориентировке трещины вызывает доминирование либо процесса пластической деформации в вершине трещины (перед ее вершиной), либо стимулирует эффекты контактного взаимодействия в перемычках между мезотуннелями за вершиной трещины. Выбор того или иного процесса происходит самоорганизован-но и зависит от того, какой из задействованных механизмов деформации и разрушения наиболее эффективно приводит к снижению темпа подрастания трещины, а следовательно, позволяет наиболее эффективно поддерживать устойчивость открытой системы — сохранять целостность элемента конструкции с развивающейся в нем усталостной трещиной.  [c.324]

Оба осложняюш,их фактора нередко выступают во взаимодействии, и тогда задачи становятся особенно трудными. Среди них следует прежде всего выделить контактные задачи о системах блоков при сложных, нетрадиционных условиях на границах взаимодействия, учитывающ,их необратимые контактные подвижки, разупрочнение и уплотнение либо разуплотнение на контактах. Подобные проблемы практически недоступны для других методов, тогда как с помощью МГЭ их можно пытаться решать, поскольку МГЭ в прямом варианте разрывных смеш,ений по самой своей структуре подходит для их решения — в ГИУ входят именно те величины, которые связываются контактными условиями. Поэтому можно ожидать прогресса в численном решении этих проблем и задач смежного класса — так называемых задач приведения , состоящих в нахождении эффективных макроскопических характеристик неоднородных сред по свойствам составляющих их элементов (блоков) и контактов. Вероятно также продвижение в задачах о плоских и пространственных системах блоков, лишь частично разделенных трещинами, в задачах о потере устойчивости при разупрочнении материала внутри блоков и при срывах сцепления на контактах — эти проблемы очень важны для горной геомеханнки и геотектоники. Вполне возможным будет развитие МГЭ и в приложениях к задачам нелинейной ползучести, распространения волн в нелинейных и неоднородных средах, при исследовании разрушения с учетом микроструктуры материала и в других областях. Для решения большинства этих проблем окажется полезным упоминавшееся объединение МГЭ и МКЭ.  [c.276]

Таким образом, при объяснении природы формирования сферических частиц в случае развития усталостной трещины необходимо исходить не из особенностей контактного взаимодействия свободных поверхностей, а из механизмов пластической деформации металла в условиях неоднородного стеснения деформации, определяющего эффект микротуннелирования усталостной трещины.  [c.176]

Вопросам разрушения при контактном взаимодействии посвяш,ен параграф данной книги, написанный М. В. Зерниным и Е. М. Морозовым. Обычно при исследовании вопросов разрушения речь идет об анализе поля напряжений для тела с трепанной, определяются условия начала роста треш,ины, реже рассчитывается траектория развития трещины в большинстве приложений разрушение рассматривается как однократный, катастрофический процесс.  [c.651]


Возникающие в области контакта й (t) силы взаимодействия берегов трещины Тп (х, f) заменяем эквивалентной системой сил нормальными к Й усилиями N х, t) — Тп x,t), приложенными в сре<-диниой плоскости, и изгибающими моментами Ml (х, t) = sign (Ad ) х xTnix, f)h. Контактное взаимодействие берегов трещинь носит односторонний характер и поэтому должны удовлетворяться условия  [c.76]

Контактные силы взаимодейств 1я д х, () берегов трещин в силу третьего закона Ньютона (действие равно противодействию) должны удовлетворять условию + х, 1) — —(х, (). Если рассматривать  [c.115]

Проскальзывание — не единственный характерный вид нарушения условий на контакте при нагружении. В тех областях границы контакта, где возникают растягивающие напряжения, могут происходить отрывные нарушения. Показательны в этом отношении контактные задачи для слоистых сред (см., например, [16]). Контактное взаимодействие нередко сопровождается возникновением трещин и трещиноподобных дефектов вблизи границы и во внутренних областях. Классический пример — образование конической трещины при вдавливании индентора (опыт Бенбоу и Рейслера). Образование трещин сильно осложняет задачу расчета параметров контактного взаимодействия. Такого рода комбинированные задачи о контакте и разрушении привлекают все большее внимание как в связи с созданием эффективных методов разрушения и дробления различных материалов, так н ввиду необходимости количественного исследования параметров износа контактирующих поверхностей и повышения их износостойкости.  [c.6]


Смотреть страницы где упоминается термин ТРЕЩИНЫ В УСЛОВИЯХ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ : [c.18]    [c.332]    [c.765]   
Смотреть главы в:

Справочник по коэффициентам интенсивности напряжений Том 1,2  -> ТРЕЩИНЫ В УСЛОВИЯХ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ



ПОИСК



Взаимодействие трещин

Контактное взаимодействие

Контактные условия

Условия взаимодействия фаз



© 2025 Mash-xxl.info Реклама на сайте