Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вычисление характеристик нелинейных функций

ВЫЧИСЛЕНИЕ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ ФУНКЦИЙ  [c.59]

Чаще всего силы сопротивления описываются нелинейными функциями скоростей, однако в практических расчетах эти функции иногда можно линеаризовать, считая сопротивление линейно-вязким. Обычно основанием для линеаризации сил сопротивления служит не столько слабая нелинейность истинных зависимостей (в действительности она может быть сильной), сколько заведомо малое влияние сил сопротивления на некоторые колебательные свойства и процессы. Так, в большинстве случаев для расчета частот свободных колебаний достаточно использовать линеаризованные характеристики сил трения, а иногда даже полностью пренебречь сопротивлениями. Силами трения часто можно пренебрегать и при вычислении амплитуд вынужденных колебаний вдали от резонанса.  [c.15]


Мы нарисовали качественную картину автоколебаний в схеме с неоновой лампой. Для того чтобы определить их количественные характеристики (период, амплитуду, вид осциллограмм), нужно задаться конкретным видом нелинейной функции / = (р(и). Проведем вычисления для кусочно-линейной функции ср (и), график которой  [c.276]

При исследовании нелинейных случайных колебаний рельсовых экипажей можно пользоваться методами статистической линеаризации, эквивалентных передаточных функций, методом малого параметра и др. Вычисление эквивалентных линеаризованных характеристик выполняют методом последовательных приближений. В ряде случаев применяют более точные, но требующие большого объема вычислений Методы, например интерполяционный или метод статистических испытаний, а также статистическое моделирование на АВМ (см. выше).  [c.421]

В связи с этим обстоятельством в ряде случаев целесообразно использовать другие подходы к оценке точности результатов, полученных методами статистической линеаризации. В работе [85] предложен метод обобщенной статистической эквивалентной передаточной функции, основанный на разложении в ряд по ортогональным полиномам Чебышева—Эрмита случайных функций и позволяющий определить (в общем случае приближенно) высшие моменты этих функций в нелинейной системе. В этом методе искомые коэффициенты линеаризации вычисляются с помощью дополнительных коэффициентов, характеризующих разложение произвольных законов распределения вероятностей в ортонормиро-ванный ряд. В первом приближении закон распределения сигнала на входе нелинейного элемента предполагается нормальным. Исходя из принятой гипотезы вычисляют моментные характеристики нелинейного преобразования и пересчитывают их для входа нелинейного элемента. По этим моментам восстанавливают плотность вероятностей входного сигнала нелинейного элемента. Если плотность вероятностей отлична от нормальной, то расчет повторяют уже с учетом того, что закон распределения не является нормальным. Вычисления продолжают до тех пор, пока не будет достигнута требуемая точность.  [c.157]

Статистический анализ системы (1.100) выполняют далее при помощи метода импульсных переходных функций в сочетании с операцией осреднения по множеству реализаций. Основная трудность заключается в том, что статистические характеристики случайных функций Uj i) выражаются через моментные функции высокого порядка относительно предыдущих приближений. При этом, начиная с ( ), утрачивается свойство гауссовости распределений вследствие нелинейного характера правых частей системы (1.100). В результате на каждом этапе вычислений уравнения относительно статистических характеристик Uj t) остаются незамкнутыми, что приводит к необходимости дополнительных предположений типа гипотез гауссовости или квазигауссовости. Однако гипотеза гауссовости сразу снимает проблему замыкания, т. е. делает ненужной замену исходного нелинейного уравнения какими-либо эквивалентными соотношениями типа (1.89), (1.100).  [c.37]


Вычисление изображений ядер Вольтерра нелинейных систем. Ядра Вольтерра и их изображения полностью характеризуют нелинейную систему подобно тому, как импульсны отклик и передаточная функция являются определяющими характеристиками линейных систем. В связи с этим изображения ядер иногда называют многомерными передаточными функциями [ 12]. Рассмотрим вопросы, связанные с определением изображений ядер Вольтерра систем, образованных различными способами соединения стационарных линейных и (Зезынерционных нелинейных звеньев.  [c.102]

В обобщенном виде система балансовых уравнений может быть представлена в виде вектор-функции Ф (Z, Z ) = О, устанавливающей соотношение между термодинамическими и расходными параметрами связей, обеспечивающее получение заданной стационарной нагрузки установки с определенными конструктивнокомпоновочными характеристиками. В геометрической интерпретации [87 1 вектор-функция Ф (Z, =- О задает нелинейную поверхность стационарных состояний установки в многомерном пространстве, координатами которого являются значения нагрузки установки как по электрической энергии, так и по холоду, а также величины подмножеств Z и Для расчета приведенных затрат, учета ограничений, отражающих требования технологичности изготовления, длительной надежной эксплуатации установки и т. д., и в дополнение к системе балансовых уравнений в математическую модель вводятся соотношения для вычисления различных технологических и материальных характеристик отдельных агрегатов. Эти соотношения получаются в результате совместного решения задач теплового, гидравлического, аэродинамического и прочностного расчета агрегатов и представляют собой в большинстве случаев неявные функции параметров совокупностей Z и Z . Опыт математического моделирования показал, что для теплоэнергетических агрегатов число этих характеристик невелико. Это характеристики изменения давления, энтальпии и средней скорости каждого теплоносителя, наибольшей температуры стенки, ее абсолютной или относительной толщины, а также расходов материалов. В обобщенном виде система характеристик описывается вектор-функцией (Z, Z ) = 0.  [c.40]

Нельзя считать окончательно завершенной и работу, связанную с представлением в математических моделях теплоэнергетических установок термодинамических и теплофизических свойств рабочих тел и теплоносителей. Наибольшее количество исследований, выполненных в этом направлении, относится к наиболее распространенному в теплоэнергетике рабочему телу и теплоносителю — воде (водяному пару) [1,2]. В настоящее время широко используются два метода определения свойств воды и водяного пара при выполнении расчетных исследований на ЭЦВМ 1) представление соответствуюш,их свойств в виде явных или неявных функций от одной, двух или нескольких переменных 2) линейная или нелинейная интерполяция по узловым точкам таблиц, введенным в память ЭЦВМ. Наибольшего внимания, по-видимому, заслуживает работа [20], содержа-гцая рекомендованную Международным комитетом по формуляциям для водяного пара систему уравнений, предназначенную для технических расчетов. Однако, во-первых, эти уравнения достаточно сложны и, во-вторых, не содержат явных выражений для определения некоторых часто употребляемых в теплоэнергетических расчетах параметров. Оба эти обстоятельства приводят к суш ественным затратам машинного времени при использовании указанных уравнений. Второй метод определения свойств воды и водяного пара требует меньшего времени расчета на ЭЦВМ, но исходная информация по нему занимает больший объем запоминающего устройства ЭЦВМ. Таким образом, еш е предстоит большая работа по определению целесообразных областей применения каждого из указанных методов в зависимости от требуемой точности вычислений значений параметров, области их определения, характеристик используемой ЭЦВМ и т. д. Этот вывод в еще большей мере справедлив по отношению к новым рабочим телам и теплоносителям, широкое применение которых намечается на атомных электростанциях, в парогазовых и других комбинированных теплоэнергетических установках.  [c.10]


Изложенная последовательность решения задачи выбора оптимальных параметров теплоэнергетических установок в условиях неопределенности предполагает, что кроме выра кения функции цели (8.19) в математической записи задачи могут иметь место балансовые ограничения в виде системы нелинейных уравнений, ограничения на технологические характеристики узлов установки в виде системы нелинейных неравенств и ограничения на параметры совокупности X. Причем в выражения ограни-чиваюш их функций могут входить случайные величины. Естественно, что такая более широкая постановка задачи суш ественно усложняет операции по вычислению целевой функции. В ряде случаев может потребоваться корректировка совокупности параметров X для ввода некоторых зависимых параметров или характеристик установки в допустимую область.  [c.184]

Достаточно общая процедура вычисления эффективной проводимости связана с применением метода возмущений или перенормировок и приводит к бесконечному ряду, суммирование которого в общем случае представляет собой трудно разрешимую задачу. В большинстве случаев остается открытым вопрос о сходимости ряда теории возмущений, если флуктуации проводимости достаточно велики. Сложность и громоздкость выражений для членов ряда возмущений затрудняют анализ его структуры и выбор методов суммирования ряда. В этом смысле определенные перспективы могут быть связаны с методом Херринга, в соответствии с которым все флуктуирующие функции представляются рядами Фурье и исходные уравнения содержат искомые амплитуды этих разложений. Редукция к нелинейной системе уравнений также приводит к ряду, но, как показано В. А. Кудиновым и Б. Я. Мойжесом [16], структура ряда относительно проста. Ее анализ позволил авторам предложить приемы приближенного суммирования итерационного ряда, приводящие к довольно простым формулам для эффективной проводимости. Этот анализ оказался полезным и для выбора пробных функций при построении вариационных оценок для эффективных характеристик. Далее излагается метод Херринга и результаты его развития в работе [16].  [c.161]


Смотреть страницы где упоминается термин Вычисление характеристик нелинейных функций : [c.78]    [c.481]   
Смотреть главы в:

Точность производства в машиностроении и приборостроении  -> Вычисление характеристик нелинейных функций



ПОИСК



Функции вычисление

Функция нелинейности

Характеристика функций



© 2025 Mash-xxl.info Реклама на сайте