Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан щелевая

Предупреждению или уменьшению щелевой коррозии способствуют те компоненты сплава, которые помогают сохранить пассивность при низкой концентрации в среде растворенного кислорода и наличии кислых продуктов коррозии. К этой категории относятся добавки молибдена к нержавеющей стали 18-8 (марка 316) или добавки палладия к титану.  [c.315]

Как и стали и алюминиевые сплавы, многие другие металлы также подвергаются язвенной коррозии при воздействии ионов хлора [44]. К ним относится- даже весьма коррозионностойкий титан [45]. Склонность к язвенной коррозии обычно увеличивается в щелях, и тогда развивается щелевая коррозия [46]. Это наблюдается и на медных сплавах [47].  [c.71]


В аппаратостроении применяют в первую очередь титан с добавкой 0,2 % Pd, который в неокислительных кислых средах имеет также повышенную стойкость к язвенной и щелевой коррозии [47].  [c.399]

В нейтральных электролитах титан и его сплавы не подвергаются щелевой коррозии. В кислых средах (например, в серной кислоте) наблюдается щелевая коррозия этого материала.  [c.73]

Из всех известных в настоящее время материалов титан и его сплавы относятся к числу наиболее стойких к морским средам при обычных температурах. Тонкая окисная пленка, образующаяся на поверхности титановых сплавов, обеспечивает полную защиту металла от коррозии. Разрушение этой пассивной пленки происходит только в специальных условиях. Несмотря на очень высокую общую стойкость титана, все же существует несколько коррозионных проблем, связанных с его использованием в морских условиях [68] питтинговая коррозия, наблюдающаяся в щелевых условиях при недостатке кислорода и температуре морской воды выше 120 °С коррозионное растрескивание высокопрочных титановых сплавов при наличии поверхностных дефектов на металле, к которому приложено растягивающее напряжение коррозионное растрескивание в солях при нагреве выше 260 °С. Эффективными мерами борьбы с этими видами преждевременного разрушения титановых сплавов являются легирование и термообработка.  [c.116]

Титан и его сплавы обладают необычайно высокой стойкостью в морских атмосферах. При обычных температурах они практически невосприимчивы к щелевой, питтинговой и общей коррозии.  [c.117]

Коррозия в морской воде. Титан обладает высокой коррозионной стойкостью в условиях морской атмосферы и в морской воде. На титановых образцах, выдерживавшихся в течение 18 месяцев как в стоячей, так и в перемешиваемой морской воде или в атмосфере морского соленого воздуха, никакой коррозии или какого-либо изменения свойств обнаружено не было. Титан принадлежит к металлам, не обрастающим с поверхности морскими организмами, присутствие которых вызывает точечную или щелевую коррозию. В гальваническом ряду различных металлов и сплавов в среде морской воды титан располагается между сплавами инконель (пассивированный) и монель. Таким образом, титан является катодом по отношению к другим конструкционным металлам. В паре с другими металлами титан обычно не корродирует, но резко усиливает коррозию более активных металлов.  [c.765]


Титан и его сплавы в нейтральных электролитах и, в частности, в морской воде не подвергаются щелевой коррозии. Однако в некоторых кислых средах, например в серной кислоте, титан подвержен щелевой коррозии.  [c.245]

Для использования в условиях морской воды при обычных температурах наиболее подходящими материалами являются титан и хромоникелевые стали с молибденом. Высокая коррозионная стойкость хрома позволяет рекомендовать хромирование для защиты от щелевой коррозии. В тех случаях, когда титан при работе в горячих концентрированных растворах хлоридов подвергается щелевой коррозии, рекомендуется использовать сплавы Ti — 0,2 % Pd, который отличается повышенной стойкостью к щелевой коррозии [2, Ti— (1—2)% Ni [57, с. 2613 и особенно Ti —2% Ni — 1 % Mo [216.  [c.88]

В узких зазорах титан подвержен щелевой коррозии, причем коррозия тем больше, чем уже зазор [36]..  [c.125]

Хром, никель, молибден, титан, аустенитные хромоникелевые стали, содержащие более 3 % молибдена, практически не склонны к щелевой коррозии. Следует иметь в виду, что продукты коррозии железа занимают объем больший, нежели железо, из которого они образовались. При наличии щелей в конструкции могут возникнуть высокие напряжения, способствующие деформации конструкций. Там, где это допустимо, целесообразно наносить  [c.607]

В присутствии влаги, особенно в условиях ее конденсации, хлор весьма агрессивен по отношению к большинству металлов в сплавов. Многие металлы и сплавы во влажном хлоре подвергаются точечной и язвенной коррозии. Некоторые материалы, например титан, проявляют склонность с щелевой коррозии. Литературные сведения о количестве влаги в хлоре, предотвращающей интенсивную коррозию и самовозгорание титана весьма противоречивы.  [c.8]

Особенно чувствительны к щелевой коррозии металлы, пассивное состояние которых обусловлено присутствием окислителей. Даже титан, который в обычных условиях не обнаруживает щелевой коррозии, может неожиданно разрушаться во влажном хлоре [37].  [c.6]

Подобное явление наблюдалось при исследовании щелевой коррозии титана в искусственной морской воде (pH 6,8—7,5, 130—140 °С) [368]. Это характерно и для щелевой коррозии в кислотах [386 387], где с уменьшением концентрации кислоты коррозия в узких зазорах типа титан — инертное контртело больше, чем в зазорах типа титан — титан иногда в последнем случае коррозия даже не наступает.  [c.145]

Необходимо коснуться еще одного интересного обстоятельства. Согласно многочисленным и достаточно убедительным данным Ni +- и Си2+-ионы, также обладающие окислительными свойствами, защищают титан от щелевой коррозии. Так, введе-  [c.147]

Титан обладает отличной стойкостью к струевой и кавитационной коррозии в морской воде. Высокую стойкость к эрозионной коррозии показали сплавы Ti - 6A1 V и Ii-7Al-2Nb-lTa. Титан обладает высокой стойкостью к питтинговой, щелевой и межкристаллитной коррозии. Он не корродирует под слоем отложений и лакокрасочных покрытий. В последние годы проводятся обширные исследования коррозионного растрескивания титановых сплавов в морской воде, причем особое внимание уделяется сплавам Ti-6A1 V Ti-6Al-6V-2Sn Ti-3 u Ti -7A1--2Nb-l Та и Ti-8Mo-8V-2Fe-3 Al.  [c.26]

Сплавы, обладающие более устойчивой пассивностью, особенно в присутствии ионов хлора, например нержавеющие хромоникелевые стали аустенитного класса, легированные молибденом, например сталь марки Х18Н12МЗТ, а также титан и хром обладают высокой стойкостью к щелевой коррозии. Благодаря высокой стойкости хрома можно рекомендовать хромовые покрытия для защиты от щелевой коррозии.  [c.207]

Сплавы, обладающие более устойчивой пассивностью, особенно в присутствии ионов хлора, например нержавеющие стали, легированные никелем и молибденом (Х18Н12МЗТ), а также высокохромистая сталь марки Х28 и особенно титан и хром, имеют более высокую стойкость против щелевой коррозии, чем нержавеющие стали марок Х17, Х18Н9.  [c.14]

Никель не входит в число основных элементов, используемых для легирования титановых сплавов. Только в некоторых частных случаях используют его добавки, главным образом в технически чистый титан, например для исключения щелевой коррозии и коррозионного растрескивания труб опреснительных установок. Так, для горячих растворов НаС1 рекомендуется применять сплав Т1 —2,5 % N —2 % 2.x [42]. Сплав Т1—2 % А1 практически не чувствителен к коррозионной среде (3,5 %-ный раствор НаС1) как в отношении щелевой коррозии, так и в отношении коррозионного растрескивания.  [c.42]


В работе [177] приведены данные о коррозии некоторых сплавов на различных глубинах (7, 27, 42 и 80 м) в Черном море. Титан обладал стойкостью на всех глубинах и скорость коррозии была <0,01 г/(м-ч). На образцах из нержавеющей стали 18Сг —9№ наблюдался питтинг (2,8 мм после экспозиции в течение 21 мес), но с увеличением глубины погружения коррозия уменьшалась. На глубине 80 м наблюдалась лишь слабая щелевая коррозия. Повышение стойкости объяснялось уменьшением температуры и более низкой концентрацией растворенного кислорода на больших глубинах. Наименьшая коррозия углеродистой стали наблюдалась на глубине 27 м (0,039 г/м -ч), что авторы связывают с более интенсивным биологическим обрастанием на этом уровне. Коррозия медных сплавов усиливалась с глубиной (0,042 г/(м -ч) при погружении на 80 м), что объяснялось образованием на меди в темноте коррозионной пленки, не обладающей защитными свойствами.  [c.187]

Титан и сплавы на его основе обладают высокой коррозионной стойкостью (сопротивлением межкристаллитной, щелевой и другим видам коррозии), удельной прочностью. Недостатками титана являются его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости. Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно — давлением, сваривается в защитной атмосфере широко распространено вакуумное литье, в частности вакуумнодуговой переплав с расходуемым электродом. Титан имеет две аллотропические модификации низкотемпературную (до 882,5 °С) — а-титан с ГПУ решеткой, высокотемпературную — р-титан с ОЦК решеткой. Легирующие элементы подразделяют в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °С) на две основные группы а-стаби-лизаторы (элементы, расширяющие область существования а-фазы и повышающие температуру превращения — А1, Оа, Ое, Га, С, О, Н) и р-стабилиза-торы (элементы, суживающие а-область и снижающие температуру полиморфного превращения, — V, N6, Та, 2г, Мо, Сг, Мп, Ре, Со, 81, Ag и др.), рис. 8.4. В то же время легирующие элементы (как а-, так и р-стабилизаторы) можно разделить на две основные группы элементы с большой (в пределе — неограниченной) и ограниченной растворимостью в титане. Последние могут образовывать с титаном интерметаллиды, силициды и фазы вне-  [c.191]

Метод высокопроизводителен и эффективен в условиях массового п крупносерийною производства. Метод непригоден для деталей сложной конфигурации, имеющих острые кромки, щелевые зазоры и замкнутые полости, из которых трудно удалить остапш травильных растворов, а также деталей, имеющих отдельные участки поверхности из неметаллических материалов или с защитными покрытиями. Поверхность детали перед травлепием следует очистить от смазок и жировых загрязнений. Поверхность протравленных деталей должна иметь цвет обрабатываемого металла, быть блестящей или матовой. На поверхностях паяемых деталей после травления не должно быть остатков окалины, а также общих, местных или точечных, видимых невооруженным глазом растравленных мест, шлама, трещии, следов неотмытых солей, растворов и влаги, следов от захвата руками. Допускаются неоднотониость, неравномерная матовость, следы от потоков воды, риски, забоины, царапины н другие механические повреждения, которые были до травления на детали. На меди, титане и их сплавах возможно выявление зернистости структуры основного металла.  [c.100]

Щелевой коррозии подвержены даже металлы, которые устойчивы к другим видам коррозии благодаря образованию на их поверхностях пленок, обладающих высокими защитными свойствами. Вибрации и эпизодические относительные микросмещения поверхностей повреждают образующуюся защитную пленку в щели, благоприятствуют ее удалению, и, создавая условия для большей неравномерности концентрации среды, способствуют более интенсивной коррозии в щели. Коррозионно-стойкие стали, титан в кислотной среде и алюминий подвержены щелевой коррозии. Последняя может  [c.185]

В докладе излагаются результаты исследований по разработке и определению областей применения указанного сплава, а также осве-щиется состояние работ по его внедрению. Представлены данные, характеризующие стойкость сплава в растворах соляной и серной кислот в широком диапазоне концентраций и температур, границы пассивного и активного состояний для сплава и нелегированного титана. Рассмотрено коррозионно-электрохимическое поведение сплава 4207 в хлоридсодержащих растворах как в кислых, так и в щелочных. Показаны существенные преимущества сплава по сравнению с нелегированным титаном в отношении сопротивляемости щелевой и пробойной коррозии.  [c.51]

Патент США, № 4082900, 1978 г. Известные методы подавления щелевой коррозии титановых аппаратов и хрупкости, обусловленной абсорбцией водорода, заключаются в осаждении на поверхность титана металла из группы платины, который затем диффундирует в титан. Титанпалла-диевые сплавы могут использоваться в качестве материала для изготовления аппаратов. Однако эти методы усложняют и удорожают производство аппаратов химических производств, так как элементы платиновой группы дороги. Для подавления коррозии и абсорбции водорода поверхностью деталей из титана, особенно в щелях. Создается смешанный оксид-  [c.254]

Рис. 5S. Поведение различных контактных пар титан — металл, погруженных в аэрированную морскую воду на 2S00 ч а — контактная коррозия б — щелевая коррозия 1 — 10 — металлы, контактирующие с титаном при соотношении поверхностей анода и катода ol 10 I — 10 — то же, но при соотношении поверхностей анода и катода соЮ 1 1,1 — малоуглеродистая сталь 2,2 — орудийный металл 3,3 — алюминий (технически чистый) 4,4 — купроникель 70/80 5,5 — купроникель 80/20, 6,6 — монель 7,7 — алюминиевая латунь 76/22 S,S — AST MB 9, 9 — латунь 60/40 10, 10 — нержавеющая сталь 18-8 (стабилизированная титаном) Рис. 5S. Поведение различных контактных пар титан — металл, погруженных в аэрированную <a href="/info/39699">морскую воду</a> на 2S00 ч а — <a href="/info/39675">контактная коррозия</a> б — <a href="/info/6627">щелевая коррозия</a> 1 — 10 — металлы, контактирующие с титаном при соотношении поверхностей анода и катода ol 10 I — 10 — то же, но при соотношении поверхностей анода и катода соЮ 1 1,1 — <a href="/info/6794">малоуглеродистая сталь</a> 2,2 — орудийный металл 3,3 — алюминий (технически чистый) 4,4 — купроникель 70/80 5,5 — купроникель 80/20, 6,6 — монель 7,7 — <a href="/info/161623">алюминиевая латунь</a> 76/22 S,S — AST MB 9, 9 — латунь 60/40 10, 10 — <a href="/info/51125">нержавеющая сталь</a> 18-8 (стабилизированная титаном)

Из всех испытанных сплавов в наших условиях не обнаружили щелевой коррозии лишь нержавеющие стали, содержащие молибден, а также такие металлы, как хром, молибден и титан. Поэтому в особо ответственных конструкциях со щелевыми зазорами следует применять молибденистые стали.  [c.272]

В условиях контактной коррозии может возникнуть щелевая коррозия, однако этот термин также включает/все сходные формы коррозии типа создаваемсй частицами пыли на гигроскопической поверхности, в узлах из соединённых заклепками пластин и т. д. Эффекты щелевой коррозии возникают также вследствие дефицита кислорода. Некоторые металлы, обладающие высокой стойкостью в присутствии кислорода, например титан, и нержавеющая сталь, могут сильно разрушаться от этого типа разъедания. Защита от него достигается рациональным конструированием, исключающим участки, в которых может собираться влага,  [c.105]

Титан и его сплавы [2 41, с. 68 57, с. 2613, с. 2231]. Несмотря на высокую коррозионную стойкость титана и его сплавов в нейтральных растворах, отмечены случаи интенсивной коррозии титана в щелях при работе в горячих концентрированных растворах хлоридов магния и аммония, в растворах хлорида натрия и в морской воде, во влажном хлоре. Было показано, что титан и его сплавы (ВТ1, ВТ4, 0Т4) подвергались щелевой коррозии в море в случае обрастания (местное разрушение под обрастателями иногда достигало 0,1 мм за два года испытания). Щелевая коррозия титана возможна также в слабокислых растворах, так как известно, что потенциал титана в отсутствие кислорода в таких растворах разблагораживается и это может привести к активации титана.  [c.87]

Практически титан и его сплавы устойчивы во всех природных средах атмосфере, почве, пресной и морской воде. Титан и особенно некоторые его сплавы имеют также высокую коррозионную стойкость и в ряде окислительных кислых сред, устойчивы в хлоридах, сульфатах, гипохлоридах, азотной кислоте, царской водке, диоксиде хлора, влажном хлоре, во многих органических кислотах и физиологических средах. Отмечена повышенная стойкость титана и его сплавов по отношению к местным видам коррозии — питтингу, межкристаллитной, щелевой коррозии, коррозионной усталости и растрескиванию. Однако титан не стоек во фтористоводородной кислоте и кислых фторидах, а такл е концентрированных горячих щелочах, хотя и устойчив в аммиачных растворах. Он не стоек и в горячих неокислительных кислотах (НС1, H2SO4, Н3РО4, щавелевой, муравьиной, трихлоруксусной), в концентрированном горячем кислом растворе хлористого алюминия (во многих этих средах, как мы увидим дальше, специальные сплавы на основе титана могут иметь высокую стойкость). Титан не стоек в некоторых сильно окислительных средах — дымящей HNO3, сухом хлоре и других безводных галогенах, в жидком или газообразном кислороде, сильно концентрированной перекиси водорода. Реакция титана с этими средами может носить даже взрывной характер.  [c.240]

Другим примером,целесообразности использования в ка честве плакирующего катодно модифицированного сплава с повышенной самонассивацией является плакирование титана (или какого-либо более высокопрочного титанового плава) титаном, модифицированным 0,2—0,3 % Pd. При этом коррозионная стойкость сплава в, кислых хлоридных растворах значительно повышается не только к обшей коррозии, но также и к щелевой и циттинговой. По имеющимся сведениям титан, плакированный сплавом TiO,2Pd, уже. применяется в зарубежной практике для изготовления аппаратов, работающих с соляно-кислыми растворами.  [c.326]

Таким образом, титан, легированный катодными добавками, а также некоторые сплавы титана, модифицированные Pd или Pt, обладают довольно редким и ценным свойством как конструкционный металлический материал для химической про мышленности, а именно, одно1временной коррозионной стойкости как в окислительных, так и в неокислительных кислых средах. Установлена также повышенная стойкость титана и некоторых его снлавов, модифицированных палладием, по сравнению с теми же сплавами без палладия в условиях щелевой, питтинго Вой коррозии и растрескивающей коррозии [76, 77].  [c.51]

Сплав титана с 0,2% "Pd (4200) имеет существенные преимущества перед титаном скорость коррозии этого сплава в процессах, протекающих с водородной деполяризацией, т. е. в неокислительных кислотах, снижается по сравнению с титаном например, при температуре кипения в 5%-ной Н3РО4 с 5,2 до 0,31 мм/год, в 10%-ной НС1 с более чем 25 до 0,5 мм/год и т. д. [41]. Этот сплав стоек к щелевой коррозии и наводораживанию и, следовательно, не охрупчивается в сильно кислых средах.  [c.129]

Титан в сухом газообразном и жидком хлоре воспламеняется. Во влажном хлоре при температурах ниже точки росы, а также Б хлорной воде до 100° С титан практически не корродирует. Этим обусловлено его широкое применение для изготовления теплооб-менников, трубопроводов, арматуры, эксплуатируемых в контакте с влажным хлором и хлорной водой. Практика показала, что ти- тан при определенных условиях проявляет склонность к щелевой коррозии. Такой вид разрушения наблюдается в зазорах между трубами и трубными решетками холодильников, в местах соединения хлоропроводов с крышками электролизеров с помощью резиновых пробок и др.  [c.17]

Практика эксплуатации титановой аппаратуры и многочисяея-ные лабораторные исследования показали, что в случае превшешш критических значений концентрации и температуры хлоридов титан начинает подвергаться сильнейшей щелевой коррозии [5-7]. Одной из наиболее вероятных причин возникновения и развития этого вида разрушения, по литературным данным, является затруднение образования окисной пленки в зазоре из-за недостатка доступа воды [8], а также постепенное понижение pH, что приводит к активации тчалжа. в зазоре [9]. 33  [c.33]

В растворах СсЮЬ отмечается низкая активность С1-иона и высокая активность воды (см. табл. 4.1). В этих растворах вплоть до 160 °С титан не подвергался питтинговой коррозии при Екор- Соответственно вероятность возникновения щелевой коррозии титана в растворах СсЮЬ тоже меньше, чем в остальных хлоридах при 140 °С (см. рис. 4.22, а) она возникала лишь в одном опыте из 3—5 параллельных. Однако в тех случаях, когда коррозия возникала при 140 и 160°С, она имела значи-  [c.140]

Сплав 4207 обладает значительно более высокой устойчивостью к щелевой коррозии, чем титан. При 120°С сплав был устойчив во всех исследованных растворах. Когда же при более высокой температуре щелевая коррозия и начиналась, то в боль-щей части растворов отмечались только ее начальные стадии. Щелевая коррозия средней интенсивности наблюдалась только в растворах Li l и Mg b (см. рис. 4.23).  [c.142]

Титан практически инертен в деаэрированных растворах NH4 I до температуры 100 °С. Щелевая коррозия возможна в концентрированных растворах NH4 I при 100 °С, а при 130 °С коррозионный процесс может распространиться на всю поверхность. В растворах с концентрацией С1 -ионов ниже 0,5 н. титан пассивен до 200 °С (рис. 4.26).  [c.143]

Некоторые исследователи [370] отмечали, что в контакте с неметаллическими материалами склонность титана к щелевой коррозии увеличивается. Например, наблюдалась интенсивная щелевая коррозия титана при контакте с фторопластом через 20 дней после погружения в кипящий 23%-ный раствор Na l (pH 2). При контакте с титаном коррозия не наступала.  [c.145]

Если в 0,1%-ный Na l с pH 7 при 150 °С, когда титан был устойчив к щелевой коррозии, добавлять КМПО4, то титан начинает корродировать. Так, при концентрации КМПО4, равной 10- , 10 " и 10 М, корродировали в щели соответственно один, два и три образца из трех испытываемых в каждом случае [378].  [c.147]


С другой стороны, в аэрированном 0,1%-ном Na l с pH 7 при 200 °С титан подвергался щелевой коррозии. Если же раствор предварительно деаэрировать, то щелевая коррозия отсутствует [378].  [c.147]


Смотреть страницы где упоминается термин Титан щелевая : [c.376]    [c.378]    [c.33]    [c.33]    [c.88]    [c.174]    [c.175]    [c.139]    [c.141]    [c.143]   
Морская коррозия (1983) -- [ c.127 , c.129 ]



ПОИСК



Причины питтинговой коррозии вблизи ЕкоР и щелевой коррозии титана

Титан

Титанит

Титания

Щелевая коррозия титана и его сплавов



© 2025 Mash-xxl.info Реклама на сайте