Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Щелевая коррозия титана и его сплавов

Щелевая коррозия титана и его сплавов возможна в горячих солевых рассолах, включая морскую воду. Опасность появления п ,елевой коррозии увеличивается с повышением температуры, концентрации и времени воздействия солевого раствора (рис. 4.20). Причиной активирования титана в щелевом зазоре является глу-  [c.200]

В табл. 4.14 приведены показатели скорости щелевой коррозии титана и его сплавов, полностью находящихся в зазоре. Скорость щелевой коррозии в зазоре незначительно меняется с изменением его величины и в сотни раз превышает скорость коррозии в объеме кислот (0,001—0,002 мм/год) в тех же условиях.  [c.152]


Представлены данные о коррозионной стойкости узлов и деталей оборудования из титана и его сплавов в промышленных агрессивных средах, и специфических видах коррозии оборудования (питтинговой, щелевой и др.) и способах борьбы с ними. Даны характеристика отечественных титановых сплавов, применяемых в химическом аппаратостроении, особенности их обработки и сварки.  [c.2]

Таблица 4.14. Скорость щелевой коррозии (мм год) титана и его сплавов в аэрированных растворах серной кислоты при 25 °С [402] Таблица 4.14. Скорость <a href="/info/6627">щелевой коррозии</a> (мм год) титана и его сплавов в аэрированных растворах серной кислоты при 25 °С [402]
Припой Ад— 15% Мп обладает более высокой жаростойкостью, чем припои Ад — Си, и пригоден для работы до 425° С, тогда как припой ПСр 72 пригоден для изделий, работающих при температуре не выше 370° С. Однако соединения из хромистых нержавеющих сталей, не содержащих N1, паянные припоем Ад—15% Мп, склонны к щелевой коррозии. Припой Ад — 15% Мп применяется главным образом для пайки титана и его сплавов. При необходимости проведения пайки сталей при 980— 1000° С вместо припоя Ад — 15% Мп обычно используют припой 214  [c.214]

Скорость щелевой коррозии (в мм/год) титана и его сплавов в аэрированных растворах серной кислоты прн 25 °С [319]  [c.106]

Из всех известных в настоящее время материалов титан и его сплавы относятся к числу наиболее стойких к морским средам при обычных температурах. Тонкая окисная пленка, образующаяся на поверхности титановых сплавов, обеспечивает полную защиту металла от коррозии. Разрушение этой пассивной пленки происходит только в специальных условиях. Несмотря на очень высокую общую стойкость титана, все же существует несколько коррозионных проблем, связанных с его использованием в морских условиях [68] питтинговая коррозия, наблюдающаяся в щелевых условиях при недостатке кислорода и температуре морской воды выше 120 °С коррозионное растрескивание высокопрочных титановых сплавов при наличии поверхностных дефектов на металле, к которому приложено растягивающее напряжение коррозионное растрескивание в солях при нагреве выше 260 °С. Эффективными мерами борьбы с этими видами преждевременного разрушения титановых сплавов являются легирование и термообработка.  [c.116]


Описанный механизм согласуется с основными фактами, известпи-Mti о щелевой коррозии титана и его сплавов. Коррозия этих металлов возникает только в достаточно изолированных щелях при определенных соотношениях температуры и концентрацпи солевого раствора. На рпс. 63 приведены данные, позволяющие приближенно определить область температур и концентраций, при которых возможна щелевая коррозия титана в реальных условиях. Коррозия пелегированиого титана (Ti—50 А) вероятна только при температурах порядка 120°С, а сплава Ti—0,2Pd —не менее 150 °С. Более высокую стойкость сплава объясняют обогащением внутренней поверхности щели палладием на начальной стадии коррозии, после чего катодная пассивация металла в щели протекает более легко [84]. Сплавы, содержащие молибден пли никель, также обладают повыщенной стойкостью к щелевой коррозии [82].  [c.129]

Для титана и его сплавов характерна малая склонность к контактной, пит-1ИИГ0В0Й и щелевой коррозии.  [c.385]

Титан и его сплавы [2 41, с. 68 57, с. 2613, с. 2231]. Несмотря на высокую коррозионную стойкость титана и его сплавов в нейтральных растворах, отмечены случаи интенсивной коррозии титана в щелях при работе в горячих концентрированных растворах хлоридов магния и аммония, в растворах хлорида натрия и в морской воде, во влажном хлоре. Было показано, что титан и его сплавы (ВТ1, ВТ4, 0Т4) подвергались щелевой коррозии в море в случае обрастания (местное разрушение под обрастателями иногда достигало 0,1 мм за два года испытания). Щелевая коррозия титана возможна также в слабокислых растворах, так как известно, что потенциал титана в отсутствие кислорода в таких растворах разблагораживается и это может привести к активации титана.  [c.87]

Практически титан и его сплавы устойчивы во всех природных средах атмосфере, почве, пресной и морской воде. Титан и особенно некоторые его сплавы имеют также высокую коррозионную стойкость и в ряде окислительных кислых сред, устойчивы в хлоридах, сульфатах, гипохлоридах, азотной кислоте, царской водке, диоксиде хлора, влажном хлоре, во многих органических кислотах и физиологических средах. Отмечена повышенная стойкость титана и его сплавов по отношению к местным видам коррозии — питтингу, межкристаллитной, щелевой коррозии, коррозионной усталости и растрескиванию. Однако титан не стоек во фтористоводородной кислоте и кислых фторидах, а такл е концентрированных горячих щелочах, хотя и устойчив в аммиачных растворах. Он не стоек и в горячих неокислительных кислотах (НС1, H2SO4, Н3РО4, щавелевой, муравьиной, трихлоруксусной), в концентрированном горячем кислом растворе хлористого алюминия (во многих этих средах, как мы увидим дальше, специальные сплавы на основе титана могут иметь высокую стойкость). Титан не стоек в некоторых сильно окислительных средах — дымящей HNO3, сухом хлоре и других безводных галогенах, в жидком или газообразном кислороде, сильно концентрированной перекиси водорода. Реакция титана с этими средами может носить даже взрывной характер.  [c.240]

Припой Ag — 15% Mn пригоден для работы до температуры 425 С, тогда как припой ПСр72 пригоден для изделий, работающих при температуре не выше 370° С. Однако соединения из хромистых сталей, не содержащих Ni, паянные припоем Ag — 15% Mn, склонны к щелевой коррозии. Припой Ag — 15% Mn применяют главным образом для пайки титана и его сплавов. При необходимости проведения пайки сталей при температуре 980—1000 С вместо припоя Ag — 15% Мп обычно используют припой ПСр92. По мнению С. Н. Систера и др., легирование серебряных припоев никелем (2—2,5%) предотвращает развитие щелевой коррозии в пограничных слоях между сталью и паяным швом вследствие образования между ними промежуточного тонкого слоя никеля.  [c.112]

В работе [37] описан такой случай щелевой коррозии титана. Трубный лист и крышка, уплотненные тефлоном, прокорродировали в местах уплотнения на 1—2 мм после 2500 ч работы при ПО—115°С в 20%-ной NH4 1. Было показано [32 с 351], что титан и его сплавы (ВТ1, ВТ4, 0Т4) подвергаются щелевой коррозии в море в случае обрастания. Коррозионные потери при этом были относительно невелики однако местное коррозионное проницание под обрастателями иногда достигало 0,1 мм за два года испытаний. Щелевая коррозия титана возможна также в слабокислых растворах, так как известно, что потенциал титана в отсутствие кислорода в таких растворах разблагораживается [32 с. 351, 39] это может привести к активации титана.  [c.69]


Титан и сплавы на его основе обладают высокой коррозионной стойкостью (сопротивлением межкристаллитной, щелевой и другим видам коррозии), удельной прочностью. Недостатками титана являются его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости. Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно — давлением, сваривается в защитной атмосфере широко распространено вакуумное литье, в частности вакуумнодуговой переплав с расходуемым электродом. Титан имеет две аллотропические модификации низкотемпературную (до 882,5 °С) — а-титан с ГПУ решеткой, высокотемпературную — р-титан с ОЦК решеткой. Легирующие элементы подразделяют в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °С) на две основные группы а-стаби-лизаторы (элементы, расширяющие область существования а-фазы и повышающие температуру превращения — А1, Оа, Ое, Га, С, О, Н) и р-стабилиза-торы (элементы, суживающие а-область и снижающие температуру полиморфного превращения, — V, N6, Та, 2г, Мо, Сг, Мп, Ре, Со, 81, Ag и др.), рис. 8.4. В то же время легирующие элементы (как а-, так и р-стабилизаторы) можно разделить на две основные группы элементы с большой (в пределе — неограниченной) и ограниченной растворимостью в титане. Последние могут образовывать с титаном интерметаллиды, силициды и фазы вне-  [c.191]

Таким образом, титан, легированный катодными добавками, а также некоторые сплавы титана, модифицированные Pd или Pt, обладают довольно редким и ценным свойством как конструкционный металлический материал для химической про мышленности, а именно, одно1временной коррозионной стойкости как в окислительных, так и в неокислительных кислых средах. Установлена также повышенная стойкость титана и некоторых его снлавов, модифицированных палладием, по сравнению с теми же сплавами без палладия в условиях щелевой, питтинго Вой коррозии и растрескивающей коррозии [76, 77].  [c.51]

В докладе излагаются результаты исследований по разработке и определению областей применения указанного сплава, а также осве-щиется состояние работ по его внедрению. Представлены данные, характеризующие стойкость сплава в растворах соляной и серной кислот в широком диапазоне концентраций и температур, границы пассивного и активного состояний для сплава и нелегированного титана. Рассмотрено коррозионно-электрохимическое поведение сплава 4207 в хлоридсодержащих растворах как в кислых, так и в щелочных. Показаны существенные преимущества сплава по сравнению с нелегированным титаном в отношении сопротивляемости щелевой и пробойной коррозии.  [c.51]


Смотреть страницы где упоминается термин Щелевая коррозия титана и его сплавов : [c.416]    [c.60]    [c.62]   
Морская коррозия (1983) -- [ c.127 , c.129 ]

Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.87 ]



ПОИСК



Коррозия и сплавы

Коррозия щелевая

Титан

Титан и его сплавы

Титан и сплавы титана

Титан коррозия

Титан щелевая

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте