Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения импульса. Уравнение движения в напряжениях

Закон сохранения импульса. Уравнение движения в напряжениях  [c.67]

Уравнения (III.22), (III.23) и (III.25), выражающие закон сохранения импульса, называются дифференциальными уравнениями движения в напряжениях.  [c.68]

Уравнения движения в напряжениях выводятся на основе закона сохранения импульса  [c.5]

Применительно к механике сплошной среды, которая строится на основе ньютоновской механики, законы сохранения приводят к существенным результатам. Из закона сохранения массы следует уравнение неразрывности, т. е. необходимое условие существования движущейся и деформирующейся среды именно как сплошной. Из закона сохранения импульса следуют дифференциальные уравнения движения сплошной среды, которые являются основой расчета ее движения и деформации. Из закона сохранения момента импульса следует симметрия тензора напряжения, что существенно упрощает динамические уравнения сплошной среды. Закон сохранения энергии лежит в основе экстремальных принципов сплошной среды и энергетических методов расчета напряженно-дефор-мированного состояния.  [c.134]


Напряжения, скорости и плотность по обе стороны поверхности разрыва связаны между собой условиями, которые должны удовлетворять основным уравнениям механики сплошной среды и уравнениям состояния выбранной реологической модели. Основные уравнения механики сплошной среды лучше использовать в интегральном виде, так как для разрывных процессов интегральная формулировка физических законов по сравнению с дифференциальной обладает большей общностью. Для непрерывных же процессов интегральная и дифференциальная формулировки полностью эквивалентны [например, закон сохранения массы в интегральной форме (V.8) и дифференциальное уравнение неразрывности (V.10), закон сохранения импульса в интегральной форме (V.14) и дифференциальные уравнения движения (V.18)l. Используя закон сохранения массы (V.8) и закон сохранения импульса  [c.247]

Исходя из законов сохранения импульса и момента импульса можно показать, что тензор напряжений симметричен ац = oji и удовлетворяет уравнениям движения  [c.195]

Для того чтобы записать в полной форме уравнения, выражающие законы сохранения импульса и энергии системы, состоящей из вещества и излучения (в общем случае неравновесного), удобно исходить из дивергентной формы уравнений, эквивалентных уравнениям непрерывности для соответствующих величин. Для движения идеального газа без учета излучения эти уравнения были сформулированы в гл. I (см. формулы (1.7), (1.10)). Уравнения для системы вещество полюс излучение легко записать путем непосредственного обобщения уравнений (1.7), (1.10) (заметим, что мы рассматриваем только нерелятивистские движения). Именно, к плотности импульса вещества добавим плотность импульса излучения 6 , а к тензору плотности потока импульса вещества П д — тензор плотности потока импульса излучения Т1 . Как известно, последняя величина эквивалентна тензору максвелловских напряжений электромагнитного поля. Точно так же к плотности энергии вещества добавим плотность энергии излучения С/, а к плотности потока энергии — поток энергии излучения /5, представляющий собой вектор Пойнтинга (импульс излучения связан с вектором Пойнтинга соотношением 6г = 8 с ).  [c.146]


При рассмотрении сплошной среды вводятся понятия полей поля плотности, поля скоростей, напряжений и т. д. Эти поля должны удовлетворять основным законам сохранения, или уравнениям баланса массы, импульса, момента количества движения и энергии. Основные уравнения баланса выполняются в любой среде. Кроме того, имеются некоторые специальные соотношения, характеризующие конкретные свойства той или иной среды они устанавливают связь между механическими напряжениями и другими параметрами, определяют поток немеханической энергии, связывают друг с другом различные термодинамические перемен-  [c.13]

В пренебрежении вкладами девиаторных напряжений и процессов релаксации движение сжимаемой среды описывается системой уравнений в частных производных, выражающих фундаментальные законы сохранения массы, импульса и энергии, которая дополнена уравнением состояния вещества [1, 2, 4, 5]  [c.14]

Численное решение получаемых уравнений в форме системы обыкновенных дифференциальных уравнений (законов сохранения импульса для каждого узла — сосредоточенной массы) осуществляется в виде явной схемы по времени (3.2.5). При этом по заданным узловым скоростям с предыдущего полуцелого временного слоя определяются приращения в узлах, (Аеар)е в элементах, А ,- на узловых линиях стыковки элементов. Далее по реологическим соотношениям упруговязкопластического деформирования вычисляются напряжения в элементах и моменты в узловых линиях затем рассчитываются обобщенные внутренние силы в узлах используя уравнения движения, определяются ускорения в узлах и новые скорости для следующего шага по А . Таковы главные этапы алгоритма явной однородной схемы расчета дискретной модели.  [c.97]

Однако для ряда жидкостей или в случае течения обычных жидкостей в тонких трубках этот принцип классической гидродинамики становится неверным. В этом случае надо воспользоваться законами течения асимметричного потока жидкости, для которого тензор вязких напряжений несимметричен (а о). Тогда необходимо рассмотреть еще один закон сохранения момента количества движения, так как перенос импульса видимого движения будет происходить не только из-за поступательного движения частиц, но и за счет вращеция частиц или ротационной диффузии. Впервые уравнение переноса для антисимметричного тензора давлений было вьшедено де Гроотом в его фундаментальной монографии 1Л. 1-4]. Ниже дано краткое изложение этих выводов.  [c.42]

В механике сплошной среды тело представляют в виде некоторой субстанции, называемой материальным континуумом, непрерывно заполняющей объем геометрического пространства. Бесконечно малый объем тела также называется частицей. Феноменологически вводятся пoняtия плотности, перемещения и скорости, внутренней энергии, температуры, энтропии и потока тепла как непрерывно дифференцируемых функций координат и времени. Вводятся фундаментальные понятия внутренних напряжений и деформаций и постулируется существование связи между ними и температурой, отражающей в конечном счете статистику движения и взаимодействия атомов. Б МСС используются основные уравнения динамики системы и статистической механики, в первую очередь законы сохранения массы, импульса, энергии и баланса энтропии. Обоснование этого и установление соответствия  [c.7]


Смотреть главы в:

Техническая гидромеханика  -> Закон сохранения импульса. Уравнение движения в напряжениях



ПОИСК



Закон Уравнение

Закон движения

Закон сохранения

Закон сохранения движения

Закон сохранения импульса

Импульс движения

Импульс напряжения

Напряжения Уравнения

Напряжения. Законы сохранения

Напряжения. Уравнения движения

Сохранение

Сохранение импульса

Уравнение импульсов

Уравнения сохранения



© 2025 Mash-xxl.info Реклама на сайте