Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные и интегральные уравнения газовой динамики

Дивергентные схемы. При сквозном расчете разрывных решений уравнений газовой динамики с помощью искусственной вязкости или метода сглаживания сеточная аппроксимация, вообще говоря, может быть произвольной (но, конечно, устойчивой), так как в результате действия вязкости или сглаживания разрывное решение становится непрерывным и гладким (с формально математической точки зрения). Однако сглаженное решение обладает узкими переходными зонами, где велики производные и где погрешности аппроксимации при умеренна густой сетке могут быть значительными. Величина погрешности приближенного решения, обусловленная такими погрешностями, локализованными в узких переходных зонах, зависит от свойств используемой сеточной схемы. Наиболее выгодными оказываются дивергентные схемы. Опишем этот важный класс схем на примере модельного уравнения (6.5). Напомним, что при переходе от дифференциального уравнения (6.5) к интегральному соотношению (6.6) было использовано то обстоятельство, что левая часть уравнения (6.5), представляет собой дивергенцию некоторого векторного поля. Поэтому интеграл по двумерной области превратился в интеграл по одномерному контуру, ограничивающему область. Сеточные схемы, обладающие аналогичным свойством, называют дивергентными или консервативными. Суммируя дивергентные сеточные уравнения по двумерной сеточной области, получаем сеточную аппроксимацию контурного интеграла.  [c.157]


Соотношения на фронте сильного разрыва. Известно, что при движении газа могут образовываться поверхности, при переходе через которые газодинамические функции терпят разрыв — возникают так называемые ударные волны (сильный разрыв). Уравнения газовой динамики, записанные в дифференциальной форме, имеют смысл в областях непрерывного течения. В общем случае уравнения газовой динамики нужно рассматривать в интегральной форме, например вида (1.7)—(1.9). Рассматривая уравнения (1.7)—(1.9) в окрестности поверхности разрыва, можно получить алгебраические соотношения, выражающие законы сохранения массы, импульса и энергии, которые должны выполняться при переходе через сильный разрыв.  [c.17]

В методе интегральных соотношений исходные дифференциальные уравнения записывают в дивергентной форме, что удобно для решения задач газовой динамики, где именно такую форму имеют законы сохранения (см. п, 6 2.1). Рассмотрим двумерный случай. Исходную систему уравнений в частных производных запишем в следующем общем виде  [c.182]

В настоящей главе приведены основные уравнения газовой динамики с учетом физико-химических превращений. Даны уравнения газовой динамики в дифференциальной и интегральной формах, а также их запись в дивергентном виде. Выписаны уравнения газовой динамики, в которых в качестве независимых переменных использованы функции тока. Представлены соотношени5г на поверхностях разрывов. Обсуждены наиболее характерные начальные и граничные условия. Выведены соотношения на характеристиках уравнений газовой динамики. Представлены некоторые фундаментальные аналитические решения основных задач газовой динамики обтекания тел, течения в соплах и струях, задача о распаде произвольного разрыва, задача о взрыве.  [c.31]

Подавляющую часть физических процессов и явлений, которые происходят в сплош ных средах (жидких, твердых, газообразных, типа плазмы и др.), можно описать с помо щью систем дифференциальных уравнений или интегродифференциальных уравнений с частными производными. Такие уравнения — весьма сложный математический объект, особенно если они являются нелинейными, а именно учет нелинейных членов в урав нениях является зачастую решающим для описания очень важных эффектов механики сплошной среды. Надежное количественное описание таких эффектов является необхо димым элементом при проектировании самых различных машин и устройств, начиная от таких крупномасштабных объектов, как самолет, подводная лодка, ракета и кончая такими миниатюрными приборами, как интегральная схема, гибкий световод и т. п. Особенно существенно значение количественных характеристик явлений при оптимальном проек тировании конструкций, когда требуется добиться большей экономичности, дальности полета, минимального веса или улучшить другие аналогичные параметры. Так, например, проектирование летательных аппаратов, полет которых может проходить со скоростью, большей скорости звука, требует умения решать задачу об обтекании тела газовым пото ком в рамках нелинейных уравнений газовой динамики. Здесь в рамках линейных моделей не удается правильно описать эффект возрастания сопротивления при приближении ско зости полета к звуковой. Таких примеров можно было бы привести очень много.  [c.13]


В настоящей главе приводятся уравнения газовой динамики в дифференциальной и интегральной формах, в том числе с учетом физико-химических превращений. Выписаны уравнения газовой динамики в координатах Мизеса. Даны соотнопхения на поверхностях разрывов. Обсуждаются наиболее характерные начальные и граничные условия. Представлены некоторые элементарные теории газовой динамики. В 1.1 уравнения приведены без вывода. При необходимости читатель может обратиться, например, к книгам [97, ИЗ, 182, 186, 189].  [c.9]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]

Основная идея метода прямых состоит в сведении решения краевой задачи для уравнения с частными производными к решению обыкновенных дифференциальных уравнений. В газовой динамике существует два численных метода, являющихся обобщением метода прямых метод интегральных соотношений Дородницына и метод Теленина, Эти методы используют в основном для решения внешних задач газовой динамики.  [c.180]

Исторически становление теоретической газовой динамики послужило не только пониманию и описанию общей структуры происходящих в сжимаемых средах физических процессов. 1 азовая лина.мика оказала также заметное влияние на развитие математики, главным образом ее части, связанной с теорией дифференциальных уравнений. Она вдохнула жизнь в целые математические направления — теорию разрывных решений дифференциальных уравнений, теорию уравнений смешанного типа, теорию квазиконформных отображений. Она стимулировала развитие теории сингулярных интегральных уравнений, группового анализа дифференциальных уравнений, фуик-ционально-аналитических и топологических методов исследования краевых задач. Она обогатила математику рядом важных понятий, таких как вырождение типа дифференциальных уравнений, сильный и слабый разрывы в решениях, градиентная катастрофа, сильная и слабая нелинейности, инвариантное и частично инвариантное решения, автомодельное решение и т. п.  [c.10]



Смотреть страницы где упоминается термин Дифференциальные и интегральные уравнения газовой динамики : [c.425]   
Смотреть главы в:

Численные методы газовой динамики  -> Дифференциальные и интегральные уравнения газовой динамики



ПОИСК



70 - Уравнение динамики

Газовая динамика

Уравнения газовой динамики

Уравнения газовой дифференциальные

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте