Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения теории упругости в цилиндрических и сферических координатах

Уравнения теории упругости в цилиндрических и сферических координатах  [c.38]

Часто весьма целесообразно оперировать основными уравнениями теории упругости в криволинейных ортогональных системах координат. Правда, это требует применения тензорного исчисления в общей форме, от которого в этой книге сознательно отказываются. Однако необходимые для дальнейшего основные соотношения для наиболее часто встречающихся криволинейных координат — цилиндрических и сферических приведены без вывода К  [c.71]


Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]

Многослойная структура с полостью или упругим включением канонической формы. Рассмотрим случай, когда полость (упругое включение) целиком расположено в одном из элементов многослойной структуры и имеет границу, представляющую собой координатную поверхность в ортогональной криволинейной системе координат (цилиндрической, сферической, эллипсоидальной). В этом случае при исследовании задачи о динамическом воздействии плоского жесткого штампа на поверхность пакета слоев или многослойного полупространства с полостью или включением целесообразно использовать принцип суперпозиции. Это позволяет точным образом свести краевую задачу динамической теории упругости к системе интегро-функциональных уравнений, при решении которой можно использовать, в зависимости от расположения неоднородности, различные методы анализа.  [c.311]

Для описания встречающихся в теории упругости векторных и тензорных величин будут параллельно применяться обычная в технической механике форма записи, а также тензорная форма записи, в которой уравнения имеют компактный вид. Но при этом будем ограничиваться тензорами в декартовых координатах, а общее описание в произвольных криволинейных координатах с помощью тензорного исчисления использоваться не будет. Там, где это представляется необходимым, будут применяться цилиндрические и сферические координаты, а иногда отдельные уравнения будут формулироваться в так называемой векторной форме записи (которая во многих разделах механики сплошной среды сегодня является обычной). Физическое содержание теории всегда будет ставиться на передний план и не затемняться математическим формализмом.  [c.10]


Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]

В 6 изложен, как нам представляется, наиболее простой приём составления основных дифференциальных операций в криволинейных координатах. Мы ограничились случаем ортогональных координат, как наиболее важным для приложений. В 7 этот приём применён для записи в ортогональных криволинейных координатах основных соотношений механики сплошной среды, в том числе для составления условий сплошности. Другой вывод условий сплошности (в любых криволинейных координатах) дан в статьях Т, Н. Блинчикова Дифференциальные уравнения равновесия теории упругости в криволинейной координатной системе (Прикл. матем. и мех., 2, 1938, стр. 407) и В. 3. Власова Уравнения неразрывности деформаций в криволинейных координатах (там же, 8, 1944, стр. 301). Запись уравнений сплошности в сферических и цилиндрических координатах приведена в книге В. 3. Власова Общая теория оболочек (Гостехиздат, 1949).  [c.69]


Смотреть главы в:

Приложение методов теории упругости и пластичности к решению инженерных задач  -> Уравнения теории упругости в цилиндрических и сферических координатах



ПОИСК



154 — Уравнения упругости цилиндрические —

511 -513 -----в теории сферической

Координаты сферические

Координаты цилиндрические

Теории Уравнения

Теория упругости

Упругие для сферической

Упругость Теория — см Теория упругости

Уравнение в цилиндрических координата

Уравнения Уравнения упругости

Уравнения в координатах

Уравнения в сферических координатах

Уравнения линейной теории упругости в цилиндрических и сферических координатах

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости

Цилиндрические и сферические координаты



© 2025 Mash-xxl.info Реклама на сайте