Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о других вариационных принципах

ПОНЯТИЕ О ДРУГИХ ВАРИАЦИОННЫХ ПРИНЦИПАХ  [c.67]

Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]


В основу настоящей книги положен курс лекций по классической механике, читавшийся автором на физическом факультете Московского государственного педагогического института им. В. И. Ленина на протяжении последних 20 лет. Книга написана в полном соответствии с новой программой по курсу теоретической физики для физических специальностей педагогических институтов, утвержденной Министерством просвещения СССР в 1977 г., в которой механика рассматривается как первый и важнейший раздел единого курса теоретической физики. Поэтому в книге особое внимание уделено принципиальным вопросам классической механики — ее основным понятиям и законам принципам относительности и причинности законам сохранения и их связи с симметрией пространства-времени вариационным принципам механики и общим методам получения первых и вторых интегралов уравнений движения методам качественного исследования поведения механических систем и ее связи с другими разделами современной физики.  [c.3]

Все мы привыкли к тому, что основные разделы физики построены на принципах динамики. Все начинается с механики материальной точки и с законов Ньютона, которые вводят основные динамические понятия массу, скорость, импульс и силу. Теоретическая механика всего лишь оформляет элементарные законы механики в более пышные одежды дифференциальных уравнений и вариационных принципов. На базе простейших законов движения материальной точки строятся более сложные уравнения движения сплошных сред газов, жидкостей и упругих тел. Здесь впервые появляются непрерывные функции координат и времени, играющие роль полей, хотя собственно полями принято считать поля в вакууме, например электромагнитное поле. Уравнения для полей — это тоже уравнения динамики. Термодинамика только на первый взгляд кажется феноменологической наукой, а в действительности она может быть построена на базе статистической физики, представляющей собой лишь специфическую разновидность динамики. Тот факт, что физика строится на принципах динамики, проявляется и в основных физических единицах измерения (например, сантиметр, грамм, секунда), которые изначально вводятся в механике материальной точки, а затем переносятся в другие, более сложные разделы физики.  [c.15]

Все без исключения традиционные способы изложения оснований механики оставляют понятие силы затененным интуицией. Иные даже питают иллюзию, что сила представляет собой выводимое понятие, существование которого вытекает из некоторых таинственных манипуляций с потенциальными функциями, вариационными принципами и магическими 6 . В традиционных изложениях приходится делать какие-то предположения относительно сил, потому что ничто не получается из ничего, ио это молчаливые, если не вообще скрываемые, предположения. Современные воззрения на основания механики возвращаются к точке зрения Ньютона и Эйлера сила является основным, априорным понятием в механике. Ньютон и Эйлер оставляли силы, как и многие другие вещи, в значительной мере неформализованными. Сегодня мы применяем к механике метод Гильберта, принятый повсеместно в остальных разделах математики и состоящий в том, что всякий объект, который входит в математическую структуру, должен быть описан явными формальными аксиомами, устанавливающими математические свойства объекта, что позволяет доказывать теоремы об этом объекте. Если есть один такой аксиоматический базис, то имеется и бесконечное множество других. Базис, принятый в настоящей книге, тесно связан с идеями, которые неформально и успешно применяются инженерами уже более века, однако равно допустимы, конечно, и другие.  [c.61]


В гибридных методах, основанных на концепции мультиполей в принципах минимума модифицированной потенциальной и дополнительной энергии, внутри элемента используется одно поле, а на границах элемента — другое независимое поле или два независимых поля. Можно, однако, использовать вариационный принцип, которому внутренне присуще понятие мультиполей. При этом подходе соответствующие поля перемещений и напряжений одновременно задаются для всего элемента.  [c.194]

Глава IV содержит изложение механики систем со связями и основ так называемой аналитической механики. Под аналитической механикой понимается часть механики, в которой изучаются общие принципы механики — вариационные, дифференциальные и интегральные принципы, обобщаются основные понятия механики, а движение различных систем описывается с помощью уравнений, сохраняющих свой вид при переходе от одних переменных к другим. Основное содержание главы IV — ВТО механика Лагранжа.  [c.6]

I) в некоторых литературных источниках в формулировке теоремы вместо слова работа используется термин возможная работа (см., например, И. М. Рабинович. Курс строительной механики. Часть II. Гос. изд-во литер, по строительству и архитектуре. М. 1954). При этом по смыслу изложения под указанным термином имеется в виду абстракция, отличающаяся от действительной работы тем, что силы, производящие работу, могут относиться к одному состоянию системы, а перемещения им соответствующие — к другому. Вместе с тем дается определение этого понятия в параграфе, посвященном принципу возможных перемещений, как работы сил на возможном перемещении, хотя в самой формулировке указанного здесь принципа термин возможная работа не используется и вместо него применено просто слово работа. Аналогичное последнему дается определение возможной работы и в классическом курсе П. Аппеля (П. Аппель. Теоретическая механика. Том первый. Пер. с пятого французского издания И. Г. М а л к и и а. Физматгиз. 1960). Как правило, в формулировке принципа возможных перемещений не используется термин возможная работа и в других литературных источниках (см., например К. Л а н-ц о ш. Вариационные принципы механики. Пер. с англ. В. Ф. Гантмахера. Под ред. Л. С. По лак а. Мир . 1965 А. И. Лурье. Теория упругости. Наука 1970 В. В. Новожилов. Теория упругос ги. Оборонгиз. 1958 и др.)  [c.498]

Идея написания настоящей книги возникла на семинаре А. А. Андронова в 1949/50 г. в связи с рассмотрением на нем вопросов составления уравнений движения разнообразных технических систем. Это рассмотрение помимо научных целей имело в виду цели преподавания, о чем А. А. Андронов неоднократно напоминал участникам семинара. Дискутировались понятия направленных связей и сервосвязей, способы составления уравнений электрических цепей, тензорные формы уравнений движения, уравнения движения механических систем, вариационные принципы теории поля и электродинамики, вопросы составления уравнений движения электрических машин и многие другие. По этим вопросам выступали с докладами Н. А. Железцов, М. Л. Левин, А. В. Гапонов, Ю. И. Неймарк,  [c.5]

Вариационный метод, конечных элементов был развит независимо в прикладной математике (хотя и под другим названием). В 1943 г. Курант [5] описал процедуру решения, основанную на (вариационном) принципе мини-л ума потенциальной энергии, используя линейные аппроксимации на треугольных элементах. Некоторые из основных понятий метода конечн х элементов были впоследствии использованы Полна. Прагером, Сингом и другими, но до  [c.24]

Материал 2, посвященный дискретным системам, также представляет определенный интерес в общей теории неидеальных систем (так как это системы с фазовым переходом). И не только потому, что он является необходимым дополнение.м к теории твердого тела или вследствие того, что в недавнее время эта тематика стала вновь популярной. Понятия дальнего и ближнего порядков являются общими для статистических систем, включая и те, которые не являются магнетиками или бинарными сплавами, для описания состояний которых эти понятия были первоначально введены. И если для упомянутых систем упорядочение имеет достаточно простую физическую интерпретацию, то для других, например жидкого гелия, сверхпроводника или двухфазной системы, оно воспринимается в основном через призму концепции подобия явлений пространственного упорядочения в дискретных системах и двухфазным состоянием в непрерывных (намагничение как фактор дальнего порядка подобно количеству сверхтекучей компоненты в Нс-И или количеству жидкой фазы в системе типа газ—жидкость и т. д.). Мы уловили эту концепцию, когда исследовали некоторые системы с помощью вариационного принципа (например, сразу было установлено, что точка Кюри для магнетика эквивалентна критической температуре в решетчатом газе, что совпадают значения всех критических показателей для этих моделей и т. д.). Конечно, точного доказательства на микроскопическом уровне эквивалентности этих внешне совсем непохожих явлений нет, она устанавливается только для моделей. Поэтому ее надо восприни.мать не как кем-то навязанную дополнительную организацию природы, а скорее как тенденцию к подобию явлений определенного класса. Обзору развития этих идей на полуфеноменологическом уровне посвящен 3 настоящей главы.  [c.715]


В 1851 г. Сильвестр впервые ввел понятие об инвариантах алгебраических форм. В так называемой Эрлангенской программе Ф. Клейн, сформулировал принцип, что каждое многообразие (в том числе различные геометрии) задается системой инвариантов относительно некоторой группы преобразований. С другой стороны, в 70-х годах XIX в. Софус Ли установил связь между интегралами дифференциальных уравнений и инвариантами непрерывных групп. Отсюда вытекает возможность интерпретации механики в терминах непрерывной группы и ее инвариантов. Основываясь на объединении вариационного исчисления и методов теории групп Ли, Э. Нетер в 1918 г. дала алгоритм, позволяющий найти систему инвариантов любой физической теории, формулируемой при помощи лагранжева или гамильтонова формализма.  [c.863]

Для иллюстраций основных понятий вариационного, метода конечных элементов в предыдущих главах широко использовалась задача, связанная с равненнем Лапласа. Она-вновь рассматривается в настоящей главе как удобное средство для пояснений. Попутно заметим, что предлагаемые принципы применимы также и для явлений в других областях.  [c.103]


Смотреть страницы где упоминается термин Понятие о других вариационных принципах : [c.200]    [c.369]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Понятие о других вариационных принципах



ПОИСК



Принцип вариационный

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте