Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметрические нелинейные явления

Параметрические нелинейные явления  [c.849]

В зубчатых передачах параметрическое возбуждение системы приводит в Конечном счете к нарушению контакта зубьев, а возникающие при этом удары — к более сложным нелинейным явлениям.  [c.116]

Уже в первые десятилетия нашего века нелинейные проблемы обсуждались не только применительно к механике (задача трех тел, волны на воде и т. д.) и к акустике, но и в связи с исследованием свойств твердых тел (учет ангармоничности колебаний атомов в кристаллической решетке в теории теплопроводности). Нелинейные задачи ставились зарождающейся радиотехникой (детектирование и генерация колебании) они непрерывно появлялись в других разделах науки и техники. Однако нелинейные трудности в этих различных областях казались совершенно специфическими и не связанными друг с другом. И лишь в 20-30-е годы в значительной мере благодаря деятельности Леонида Исааковича Мандельштама — создателя советской школы нелинейных физиков — среди специалистов различных областей физики и техники начало вырабатываться нелинейное мышление , и они начали перенимать нелинейный опыт друг у друга. Общность нелинейных явлений различной природы и общность их моделей, образов и методов рассмотрения стали почти очевидными. Сформировался своеобразный нелинейный язык, оперирующий такими понятиями, как нелинейный резонанс, автоколебания, синхронизация, конкуренция, параметрическое взаимодействие и т. д. Этот язык сопутствовал формированию современной теории колебаний и волн.  [c.13]


Резонансное взаимодействие волн — наиболее характерное проявление нелинейных свойств разнообразных сред. Как мы знаем (см. гл. 20), возникающие при таком взаимодействии нелинейные явления (генерация гармоник и субгармоник, самомодуляция и самофокусировка волн, различного рода параметрические процессы) обнаруживаются в диспергирующих средах даже при весьма малой нелинейности, если выполнены условия синхронизма = О, = = О, где u i — частоты, а к(сс г) — волновые векторы взаимодействующих волн. Амплитуды этих волн являются медленно изменяющимися функциями пространственных координат и времени. Нелинейное взаимодействие квазигармонических волн, как мы уже говорили, играет большую роль в физике плазмы, гидродинамике, нелинейной оптике, физике конденсированного состояния и других областях. Если число элементарных возбуждений в среде очень велико, то, как правило, устанавливается нерегулярное поведение волнового поля.  [c.480]

Явления, связанные с обратимыми изменениями физических свойств среды под действием проходящего сквозь среду интенсивного света, называют нелинейно-оптическими. Выше мы говорили об изменении под действием света такой характеристики среды, как ее диэлектрическая восприимчивость. С этим связаны, в частности, явления генерации оптических гармоник, параметрического рассеяния света, параметрической генерации света — явления, прекрасно демонстрирующие нарушение принципа суперпозиции световых волн в среде (позднее мы поговорим о них подробнее). Нелинейно-оптические явления могут быть обусловлены изменением под действием света не только восприимчивости, но и других физических характеристик, например степени прозрачности (коэффициента поглощения) вещества.  [c.213]

С появлением лазера произошло второе (по сути дела, фактическое) рождение нелинейной оптики. Идеи Вавилова были развиты и воплощены в жизнь его учениками и последователями. Большой вклад в развитие нелинейной оптики внесли советские физики Р. В. Хохлов и С. А. Ахманов. Они установили в 1962 г. условия, при которых различные нелинейно-оптические явления (в частности, удвоение частоты света) должны протекать достаточно эффективно, выдвинули и обосновали идею параметрической генерации  [c.217]

Выше уже указывалось, что характер протекания резонансных явлений в колебательных системах с одной степенью свободы существенно меняется в зависимости от того, является ли изучаемая система линейной или обладает определенными нелинейными свойствами, а также от характера рассматриваемого воздействия. Даже ограничиваясь случаем гармонической формы воздействия, мы встречаемся с весьма различными особенностями резонансных явлений при прямом (силовом) или параметрическом воздействиях. В предыдущих параграфах рассматривались процессы, протекающие при простейших видах воздействия в линейных и нелинейных системах.  [c.139]


Для нелинейных систем (в отличие от линейных) неприменим принцип суперпозиции, и поэтому не представляется возможным разделить в результирующем процессе компоненты, вызванные отдельными составляющими внешнего воздействия. Это обстоятельство чрезвычайно усложняет анализ вынужденных процессов в нелинейных системах даже в консервативном приближении и делает не вполне корректным рассмотрение случая прямого силового воздействия без учета одновременного воздействия на параметры системы. В самом деле, если учесть, что вынужденный периодический процесс, обязанный своим происхождением прямому воздействию, вызывает в свою очередь периодическое изменение параметров нелинейной системы, то становится ясным, что результирующие резонансные явления могут иметь весьма сложный характер. Частотные соотношения, при которых происходят резонансные явления, также будут задаваться условиями нелинейных прямого или параметрического резонансов. Эти обстоятельства не позволяют для нелинейных систем полное разделение двух упомянутых типов резонансных явлений. Поэтому представляется разумным, выделяя случай чисто параметрического резонанса, не противопоставлять ему случай силового, или прямого, резонанса для нелинейной системы. Можно лишь классифицировать виды воздействия, связанные с различными способами внесения энергии в систему, что является определяющим для протекания резонансных явлений.  [c.141]

Высокая мощность лазерного излучения позволяет использовать в ОНК нелинейные оптические явления, в том числе параметрическую перестройку частоты излучения, самофокусировку света, активную спектроскопию когерентного рассеяния и др. Становится возможным активный оптический контроль, когда дефектные места объекта (дефекты топологии ИС и т. п.) могут локально удаляться испарением под действием луча ОКГ.  [c.52]

Однако в то же время целый ряд существенных динамических явлений, наблюдаемых при эксплуатации машин и лимитирующих их производительность, не вмещается в рамки моделей модификации 2. К числу таких явлений в первую очередь следует отнести различные параметрические явления, связанные с колебаниями ведущих звеньев с учетом упругих свойств привода и переменности приведенного момента инерции. Простейший тип модели, способный выявить эти особенности, отнесен к модификации 3. В этом и последующих случаях система дифференциальных уравнений, строго говоря, уже оказывается нелинейной, а при некоторых приемлемых упрощениях может быть сведена к системе линейных дифференциальных уравнений с переменными коэффициентами. Помимо модели H—U—0 к этой модификации также могут быть отнесены модели, у которых имеется несколько последовательных цикловых механизмов типа О——Н—Па—0.  [c.52]

Нелинейные оптические явления в кристаллах позволяют осуществлять преобразования излучения заданной частоты в излучение с частотой, которую можно перестраивать в определенном диапазоне. Принцип действия такого рода преобразователей частоты, получивших название параметрических генераторов света, заключается в следующем.  [c.77]

Ниже рассмотрены некоторые специфические особенности вынужденных и параметрических колебаний нелинейных систем. Ряд явлений, сопровождающих действие высокочастотных колебаний в нелинейных системах, изучается в гл. IX,  [c.156]

За 20 лет существования нелинейной волоконной оптики были достигнуты большие успехи как в решении прикладных задач квантовой электроники, так и в изучении фундаментальных физических явлений. Такие нелинейные процессы, как параметрическое усиление, вынужденное комбинационное рассеяние и вынужденное рассеяние Мандельштама-Бриллюэна, успешно используются в создании и разработке волоконных лазеров, усилителей и преобразователей параметров излучения. В волоконных световодах изучаются сжатые состояния света, генерация и распространение оптических солитонов, явление фоточувствительности стекла.  [c.5]

Ограничивающим фактором, особенно резко проявляющимся при переходе к фемтосекундным импульсам, оказывается линейная дисперсия групповой скорости. В связи с этим актуальна разработка методов компенсации расстройки групповых скоростей взаимодействующих импульсов — методов реализации группового синхронизма. С другой стороны, параметрические взаимодействия волновых пакетов в условиях сильной групповой расстройки приводят к новым нелинейным волновым явлениям, они могут быть положены в основу эффективных методов формирования сверхкоротких импульсов. Среди них — генерация гигантских параметрических импульсов при взаимодействии коротких пакетов с сильно различающимися длительностями, формирование параметрических солитонов и т. д.  [c.110]


Итак, при параметрическом распаде излучения частоты соз в синхронизме имеет место совместное экспоненциальное усиление излучения на частотах oi и 2. При увеличении Ак усиление сменяется на синусоидальную зависимость от z. Указанное усиление — одно из проявлений эффекта бозе-конденсации фотонов [19]. Оно является аналогом вынужденного излучения в системе, где роль возбужденного состояния играет фотон частоты соз в нелинейной среде. Вероятность распада этого состояния пропорциональна интенсивности излучения на частотах oi и сог-При Ао1 == Ло2 = О классические уравнения (1.104) дают Ai(z) = = A2 z)=0. При учете в квантовом описании пулевых колебаний электромагнитного поля на частотах oi и 0J2 1,2(2) не равны нулю, даже если падающее на среду излучение на частотах со 1 и 052 отсутствует. Это явление называется спонтанной параметрической люминесценцией [20] и находится в том же отношении к параметрическому усилению, что и спонтанное излучение на резонансном переходе к вынужденному [21].  [c.40]

В радиотехнике также находят применение нелинейные распределенные системы. Это, например, линии, заполненные ферритом, а также параметрические усилители бегущей волны на основе линий с сегнегоэлекгриком. В последние годы в связи с развитием лазерной техники нелинейные явления начали использоваться и в оптическом диапазоне.  [c.375]

Такие нелинейные явления в роторах, как автоколебания вследствие действия циркуляционных сил и параметрические колебания, обусловленные анизотропными свойствами роторов, когда нелинейности выступают не как причины особых эффектов, а тппгп. как факторы, ограничивающие колебания после потери устойчивости, рассмотрены в гл. 7.  [c.373]

Возможности таких волоконных световодов с низкими потерями привели не только к революции в области волоконно-оптической связи [14-17], но и к возникновению новой области науки-нелинейной волоконной оптики. Первые нелинейные явления (вынужденное комбинационное рассеяние и рассеяние Мандельштама-Бриллюэна) были экспериментально [18, 19] и теоретически [20] исследованы в одномодовых волоконных световодах еще в 1972 г. Эти работы стимулировали изучение других нелинейных явлений-оптически индуцированного двулучепреломления [21], параметрического четырехфотонного смешения [22, 23], фазовой самомодуляции [24, 25]. Важный результат был получен в 1973 г., когда было теоретически показано, что в оптических волокнах могут существовать солитоно-подобные импульсы, которые обусловлены совместным действием эффектов дисперсии и нелинейности [26]. Оптические солитоны позже наблюдались в эксперименте [27]. Их использование привело к большим успехам в области генерации и управления параметрами ультракоротких оптических импульсов [28-32]. В равной степени важное развитие получило использование оптических волокон для сжатия импульсов [33-36]. Были получены импульсы длительностью  [c.10]

Эти работы намечают некоторые возможности практического применения нелинейных явлений. Трудности, с которыми, по-видимому, можно встретиться при осуществлении такого рода нараметрических излучателей и приемников, заключаются в том, что при малой интенсивности взаимодействующих волн эффективность параметрического преобразователя чрезвычайно мала. Казалось бы, можно увеличить эффективность путем увеличения интенсивности этих волн. Однако повышение интенсивности приводит в отсутствие дисперсии, как это видно из результатов, приведенных в данном параграфе, к резкому увеличению затухания взаимодействующих волн, и в конечном счете не позволяет увеличить эффективность преобразования.  [c.122]

Среди других задач, не затронутых в гл. 3—5, следует указать на задачи, связанные с исследованием нелинейных явлений в оптических резонаторах. Первоочередный интерес они пpeд taвляют в связи с исследованием процессов в параметрических генераторах света, комбинационных лазерах, резонаторных умножителях частоты. Некоторые результаты, относящиеся к указанному кругу вопросов, можно найти в [41, 48—50], однако в целом теория таких процессов еще далека от завершения.  [c.26]

Нелинейные свойства элементов цепей с сосредоточенными постоянными на радиочастотах и микроволновых систем хорошо известны радиоинженерам. В настоящей монографии обсуждаются нелинейные явления на оптических частотах. Оказывается, что генерация гармоник, параметрическое усиление, модуляция и выпрямление имеют свои аналоги и в видимой области электромагнитного спектра. В настоящей книге изложе-  [c.31]

Нелинейные теории для акустических волн в пьезополупроводниках развивались многими авторами (см., например, [77—81]). При этом удалось достичь хорошего понимания многочисленных тонких эффектов, сопутствующих процессам усиления, генерации и параметрического взаимодействия звуковых волн. Мы не имеем возможности подробно остановиться на этих интересных, но довольно сложных теориях. Ниже будут обсуждены лишь два простейших нелинейных эффекта — генерация второй гармоники [79, 80, 821 и акустоэлектрический эффект [83]. Несмотря на простоту, эти два эф кта дают представление о нелинейных явлениях в полупроводнике, по крайней мере в тех случаях, когда амплитуды звуковых полей могут считаться малыми.  [c.330]

Многофотонные явления. Выше мы рассмотрели лишь некоторые нелинейные оптические явления, обусловленные соответствую-ш,ими нелинейными коэффициентами восприимчивостей. Однако этим не исчерпываются явления, к которым приводят коэффициенты разложения х и т. д. В частности, нелинейная поляризуемость первого порядка приводит к трехфотонному, — к четырехфотонному параметрическим рассеяниям света, и — к эфг11екту параметрического усиления света и т. д. Нелинейные восприимчивости более высоких порядков тоже приводят к соот-ветствуюш,им нелинейным эффектам.  [c.394]


Рассматриваемое явление называют параметрическим рассеянием света (или, менее удачно, параметрической люминесценцией). Световые волны, возникающие при параметрическом рассеянии, распространяются под некоторыми углами к направлению распространения волны накачки, определяемыми условием синхронизма (9.4.8). На рис. 9.12 эти углы обозначены как ф1 (для волны частоты и Ф2 (для частоты oj)- Если смотреть навстречу синему лазерному лучу, проходящему сквозь нелинейный кристалл ниоба-  [c.236]

Для резонансных явлений в нелинейных консервативных системах как при силовом, так и при параметрическом воздействии характерна и принципиальна несимметрия резонансных кривых, связанная с законом неизохронности колебаний рассматриваемой системы. Это общее свойство присуще также и неконсервативным системам, но лишь при условии, что по крайней мере один из их консервативных (энергоемких) параметров зависит от основной переменной, т. е. по введенной терминологии нелинеен (например, нелинейная емкость, нелинейная индуктивность, нелинейная жесткость и т. п.).  [c.141]

Из всего изложенного выше вытекает, что для теоретического исследования явления парадштрической генерации колебаний необходимо привлечь к рассмотрению нелинейные характеристики параметров системы. Их анализ позволяет получить как закон установления амплитуды параметрических колебаний, так и выражения для стационарных значений этих а илитуд.  [c.163]

В колебательных системах с г-араметрическим воздействием возможно появление комбинационных явлений. В параметрических преобразователях, в которых преобразование частоты производится с помощью напряжения накачки с использованием нелинейных эле.ментов, может возникнуть целый ряд комбинационны  [c.183]

Если потенц. энергия О. содержит члены типа ах, Рх и т. д., то О. наз, ангар л оническим (нелинейным) и характер его движения радикально отличается от даваемого ф-лой (2). Если частота гар-монич. О. меняется со временем, то О. наз. параметрическим, для к-рого также характер колебаний отличен от (2), причём существуют новые явления, напр. параметрич. резонанс О.  [c.482]

УСИЛИТЕЛИ ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ—устройства, в к-рых осуществляется повышение мощности электрич. колебаний с частотами 0 3-10 Гц за счёт Преобразования энергии стороннего источника питания (накачки) в энергию усиливаемых колебаний. Физ. явления, используемые для преобразования энергии, могут быть разделены на следующие осн. группы взаимодействие эл,-магн. поля с управляемыми потоками носителей заряда в вакуумных или полупроводниковых усилит, элементах и приборах перераспределение мощности по комбинац. частотам при изменении энергоёмкого параметра колебат. контура под воздействием источника накачки (см. Параметрическая генерация и усиление электромагнитных колебаний), вынужденное излучение возбуждённых частиц вещества, вызванное действием эл.-магн. поля (квантовые парамагн. У. э. к.— мазеры) взаимодействие зл.-магн. волн с распределёнными полупроводниковыми структурами с нелинейными или изменяющимися во времени параметрами.  [c.239]

Второй вид нелинейности—связь между разл, типами колебаний намагниченности—лежит в основе т, и. параметрического возбуждения спиновых волн. Оно приводит к преждевременному насыщению Ф. р. при амплитудах перем, поля, значительно меньших, чем те, при к-рых насыщение должно было бы наступить вследствие упомянутой вьппе одномодовой нелинейности, а также к дополнит, поглощению при величинах пост, поля, меньших, чем резонансные (рис. 7). Эти явления обнаружи-  [c.310]

В настоящее время не существует строгого и последовательного учета всех особенностей ФМР. Однако отдельные аспекты резонансных явлений в ферромагнитных материалах широко пременяются в технике. Например, развитие представлений о линейных и нелинейных. эффектах при ФМР дало основу для создания новых СВЧ устройств вентилей, ферритных генераторов и усилителен, параметрических преобразователей и ограничителей мощности.  [c.182]

При данном значении угла (т. е. при известном наклоне нелинейного кристалла по отношению к оси резонатора) соотношение (8.59) определяет связь между (Oi и (02, а вместе с соотношением (8.58а) оно позволяет вычислить обе частоты (Oi и (02. Можно реализовать условия фазового синхронизма как типа I, так и типа 11 (например, e(o, Ow, +бщ, в отрицательном одноосном кристалле), а перестройку можно осуш,ествлять изменением либо наклона кристалла (угловая перестройка), либо температуры (температурная перестройка). В заключение заметим, что если усиление, обусловленное параметрическим эффектом, достаточно велико, то можно обойтись и вовсе без зеркал, а интенсивное излучение на частотах (Oi и (02, происходяш,ее от параметрического шума, можно получить за один проход через кристалл. Это внешне очень похоже на явления суперлюминесценции и усиленного спонтанного излучения, которые рассматривались в разд. 2.7, и иногда (довольно необоснованно) называется суперлюминесцентным параметрическим излучением.  [c.503]

Нелинейный оптический отклик, характеризуемый параметрами djjf, и Xijhn приводит к многочисленным интересным явлениям и применениям. Нелинейность второго порядка Р. = Id-ji EjE, ответственна за генерацию второй гармоники [1] (удвоение частоты), за генерацию суммарной и разностной частот и за параметрическое усиление и генерацию. Член третьего порядка Р = фи-  [c.543]

Параметрические процессы третьего порядка обусловлены взаимодействием четырех оптических волн и включают в себя явления генерации третьей гармоники, четырехволнового смешения и параметрического усиления [1-5]. Четырехволновое смешение достаточно интенсивно исследовалось [6-29], поскольку это довольно эффективный способ генерации новых частот. Его основные свойства следуют из рассмотрения нелинейной поляризации третьего порядка  [c.282]

Задача преобразования изображения означает необходимость сохранения при переводе в видимую область возможно более широкого пространственного спектра при взаимно однозначном соответствии отдельных его компонент в видимой и ИК-об-ластях. Наиболее удобным для перевода ИК-излучения в видимый диапазон является вффект сложения частот в нелинейной оптической среде. По сравнению с вычитанием частот этот эффект предпочтительнее, поскольку в этом варианте отсутствует прямая спонтанная параметрическая люминесцеыция, которая является мощным источником шума. Сказанное приводит к следующей общей схеме нелинейно-оптического преобразователя ИК-излучения. В нелинейную среду, где сформирована нужным образом световая волна (волны) накачкн, попадает сигнальное ИК-излучение. Благодаря эффекту сложения частот в среде генерируется излучение суммарной частоты, т. е. видимого диапазона [14—16, 29—253]. Пространственное распределение накачки, благодаря явлению синхронизма, обеспечивает  [c.45]

На рис. 7.3 проведена классификация оптических явлений в диэлектриках, обусловленных самовоздействием интенсивных когерентных потоков света. В соответствии с соображениями, изложенными ранее, детальнее рассматриваются фактически используемые эффекты, обусловленные квадратичной нелинейностью, такие, как генерация второй гармоники, суммовых и разностных частот, включая визуализацию УФ- и ИК-излучений, и параметрическая генерация. Ввиду ограниченности объема предельно кратко излагаются данные о начинающих входить в инженерную практику эффектах, вызываемых кубичной нелинейностью, а также фоторефракцией. Вопросы лучевой прочности и лучевого пробоя не рассматриваются как существенно отличающиеся по характеру.  [c.196]


Оптические затворы, скорость переключения которых не ограничивается временем релаксации ориентации или каким-либо другим временем релаксации, могут быть созданы на основе явлений сложения частот, параметрического усиления, а также нелинейного оптического обраи ения волнового фронта (см. [3.22, 3.23]).  [c.127]

В многочисленных исследованиях динамического поведе ния цилиндрических оболочек рассматривалось влияние не линейности, присущей теории оболочек большого прогиба Обзор работ этого направления содержится в отчете [2] Цеди всех этих исследований, вообще говоря, носят двоякий характер. Первой целью является определение качествен ных эффектов, вызванных нелинейностью, таких, как явление прощелкивания и необычные динамические процессы при резонансном возбуждении, а также неустойчивость при параметрическом возбуждении. Некоторые из наиболее значительных исследований в этой области описаны в работах [3—7].  [c.63]


Смотреть страницы где упоминается термин Параметрические нелинейные явления : [c.24]    [c.543]    [c.281]    [c.111]    [c.644]    [c.419]    [c.311]    [c.478]    [c.67]    [c.779]    [c.495]    [c.392]   
Смотреть главы в:

Оптика  -> Параметрические нелинейные явления



ПОИСК



Нелинейные явления

Ряд параметрический

Явление



© 2025 Mash-xxl.info Реклама на сайте