Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения для осесимметричного тела

Основные уравнения для осесимметричного тела  [c.275]

ОСНОВНЫЕ УРАВНЕНИЯ ДЛЯ ОСЕСИММЕТРИЧНОГО ТЕЛА  [c.277]

Простейший пример пространственного пристенного пограничного слоя дает продольное осесимметричное обтекание тела вращения. Как и в плоском случае, можно отсчитывать х вдоль контура тела, а у — по нормали к нему (рис. 185) и рассматривать эти координаты как прямолинейные, а радиус-вектор г точки М по отношению к оси тела с достаточным приближением считать совпадающим с радиусом поперечной кривизны тела Го (а ) в соответствующем нормальном к оси тела его сечении. При таком подходе основное уравнение пограничного слоя сохранит тот же вид, что и в плоском случае, а уравнение неразрывности примет обычную для продольного осесимметричного движения в цилиндрических координатах форму  [c.492]


Связь с плоской задачей. Решение первой и второй основных задач для осесимметричного тела можно привести к задаче определения двух аналитических функций для плоской задачи (для области, образованной диаметральным сечением) при соответствующих граничных условиях [1]. Граничные значения этих аналитических функций находят из системы интегральных уравнений.  [c.43]

Механическая и математическая постановка задачи о кручении тела вращения. При рассмотрении задачи об осесимметричной деформации тела вращения в цилиндрической системе координат г, ф, г основные уравнения линейной теории упругости распадаются на две независимые системы. Первая система служит для определения перемещений и и т и напряжений о,, Ог, и Гп в случае, когда тело вращения, деформируясь, не скручивается. Вторая система служит для определения перемещения V и касательных напряжений Тг и Гщ в случае чистого кручения тел вращения.  [c.246]

Изучение проблемных вопросов сверхзвуковой аэродинамики шло параллельно с разработкой методов, пригодных для практического расчета различных случаев сверхзвуковых течений. Одним из основных рабочих методов был классический метод характеристик. С созданием электронно-вычислительных машин главный его недостаток — трудоемкость вычислений — был снят, что значительно расширило область применения метода. Однако и раньше пытались упростить метод характеристик достаточно простой метод интегрирования уравнения характеристик (характеристики одного из семейств заменялись параболами) разработал А. А. Дородницын (1949), линеаризованный метод характеристик (обобщение метода расчета двумерных течений) предложил А. Ферри (1946). Оба метода использовались в случаях осесимметричного обтекания тел вращения.  [c.328]

В линейной теории вычисления могут быть проведены относительно простыми аналитическими средствами, так как линеаризированные уравнения потока в основном совпадают с уравнениями волнового движения малой амплитуды. Следовательно, многие хорошо известные методы теории волн могут быть применены в такой упрощенной сверхзвуковой аэродинамике это особенно справедливо для случая тонких тел вращения (например, для фюзеляжа самолета, корпуса снаряда и для плоских тел, подобных крылу самолета). В этих случаях может быть сделано дальнейшее упрощение, которое касается граничных условий задачи, а именно, требования плавного обтекания. Это условие определяет, в случае осесимметричного потока, направление вектора скорости на поверхности, а в случае плоского тела — направление составляющей вектора скорости, лежащей в плоскости нормальной к средней поверхности тела. Линеаризированные дифференциальные уравнения при указанных граничных условиях можно решить точно, но, обычно, приходится применять численные и графические методы. Поэтому желательно дальнейшее упрощение задачи, которое достигается с помощью предельного перехода от точных граничных условий к условиям, относящимся к оси тела вращения или к плоскости плана крыла вместо действительной поверхности. Приводимые ниже результаты основаны на этом приближении. Строго говоря, только это приближение согласуется с допущениями линейной теории, потому что если удовлетворить граничным условиям на действительной поверхности, то, в рассмотрение, вообще, войдут члены высшего порядка, которые были отброшены в дифференциальных уравнениях.  [c.13]


Задачи для цилиндрических тел. В статьях [22,23] и монографиях [8,9] исследуются осесимметричные контактные задачи для неоднородных стареющих вязкоупругих цилиндрических тел, наращиваемых системами жестких усиливающих элементов (см. рис. 3 и рис. 4). По своему математическому содержанию они идентичны плоским контактным задачам, рассмотренным ранее (см. также пп. 3-5). Поэтому основное внимание сосредоточено здесь на постановке задач, выводе их разрешающих систем интегральных уравнений и анализе качественных и количественных эффектов, обусловленных процессами ползучести, неоднородного старения и неодновременного присоединения жестких элементов.  [c.555]

Один подход был предложен А. А. Никольским (1950) для линейных задач. Основная его идея распространяется на двухмерные задачи в точной постановке и заключается в следующем. Из концевых точек образующей тела проводятся до точки пересечения отрезки характеристик уравнений газовой динамики. Совокупность этих отрезков называется контрольным контуром. Волновое сопротивление тела, условие непротекания газа через его поверхность, длины проекций образующей тела на оси координат и некоторые другие величины выражаются в виде интегралов через функции на контрольном контуре. В результате плоская и осесимметричная задача оптимизации формы тела сводится к одномерной вариационной задаче для функций на контрольном контуре.  [c.242]

Пусть осесимметричное движение газа представляет собой обтекание сверхзвуковым потоком некоторого тела вращения, при этом ударная волна, образующаяся перед телом, также будет телом вращения с той же осью симметрии. В меридианной плоскости эта ударная поверхность будет изображаться некоторой линией, которая, вообще говоря, будет криволинейной, но в некоторых частных случаях может быть и прямолинейной. Основные соотношения, связывающие параметры газа до и после скачка, полученные при изучении сверхзвукового плоскопараллельного течения, могут быть получены тем же способом и для ударной волны при осесимметричном движении. Поэтому при осесимметричном движении будут иметь место все уравнения получаемые из этих соотношений. Например, если поток до скачка равномерен и направлен по оси симметрии, то, согласно главе VI угол наклона 0 ударной волны в данной точке связан со скоростью набегающего потока иу и компонентами скорости газа за скачком формулой  [c.367]

Изложенный выше метод характеристик для сверхзвукового осесимметричного обтекания острых тел вращения может быть перенесен на случай несимметричных течений вокруг тела с малым углом атаки, при этом за основное течение берется осесимметричное течение около тела вращения и накладывается на него слабое возмущенное движение газа, соответствующее малому углу атаки. Учитывая для этого дополнительного течения только линейные члены, мы получаем для его определения линейные дифференциальные уравнения.  [c.394]

Некоторые виды турбулентных струйных течений являются лишь условно автомодельными. Это — плоские осесимметричные следы, удаленные от обтекаемых тел на такое расстояние, при котором дефицит скорости мал по сравнению со скоростью невозмущенного потока. Сложные течения струй за соплами конечных размеров можно рассматривать как автомодельные при соответствующих масштабах длин, скоростей и субстанций и принятия тех или иных допущений. Основные положения механики сплошных сред в данном случае предусматривают формулирование уравнений сохранения массы, импульса, субстанций или энергии со своими граничными условиями.  [c.221]

Введение аналогов интеграла Коши и формулы Коши дает возможность сводить основные задачи осесимметричной теории упругости для тел вращения к одномерным интегральным уравнениям. Этот путь был развит в работах В. С. Чемериса [156—161], а также Г. Н. Положия и В. С. Чемериса (115, 116]. Приведем здесь интегральные уравнения для решения первой и второй основных задач в случае тел вращения, не имеющих полостей.  [c.446]


Смотреть страницы где упоминается термин Основные уравнения для осесимметричного тела : [c.258]    [c.550]    [c.460]    [c.460]    [c.460]    [c.89]    [c.395]   
Смотреть главы в:

Сопротивление материалов  -> Основные уравнения для осесимметричного тела



ПОИСК



Тела осесимметричные

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте