Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ДИНАМИКА ТОЧКИ Введение в динамику. Законы динамики

Сущность этих понятий, а также введенного в статике понятия силы и их взаимосвязь раскрывается в основных законах динамики, с рассмотрения которых мы и начнем изложение динамики материальной точки.  [c.439]

Этот постулат можно было бы вывести из общего принципа, известного под названием принципа виртуальных перемещений, но мы пока не будем этого делать. Мы установим упомянутый принцип в одной из следующих глав как основание аналитической статики. Было бы также бесполезно вводить этот постулат, если принять основные законы динамики в том виде, как мы их изложили в предшествующей части курса, так как рассматриваемый постулат, как мы это увидим позже, представляет собой простой частный случай одной общей теоремы динамики твердого тела. Если мы вводим его здесь, то делаем это с той целью, чтобы сохранить за статикой характер самостоятельной дисциплины. Мы будем смотреть на этот постулат, с точки зрения физики, как на прямое следствие опыта с точки же зрения теоретической механики мы будем рассматривать его как дополнение к определению твердого тела, принятому в статике, получая при этом ту выгоду, что мы освобождаемся от введения молекулярной гипотезы.  [c.232]


Замечательным является то, что введенные нами ранее понятия траектории, скорости, ускорения и другие кинематические величины, так же как и законы динамики, сохраняют полноту своего смысла и значения для описания движения каждой отдельно взятой частицы жидкости. Они только оказываются связанными с новыми понятиями, отображающими особенности механического поведения жидкости  [c.284]

Применяя принцип Даламбера, следует иметь в виду, что он, как и основной закон динамики, относится к движению, рассматриваемому по отношению к инерциальной системе отсчета. При этом на точки механической системы, движение которой изучается, действуют только внешние и внутренние силы и f, возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему под действием этих сил точки системы и движутся с соответствующими ускорениями Wu- Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, согласно уравнениям (97), эти точки находились бы в покое или двигались без ускорений и тогда, как видно из равенства (96), не было бы и самих сил инерции). Введение сил инерции— это лишь прием, позволяющий составлять уравнения динамики с помощью более простых методов статики,  [c.427]

Дальше излагается кинетика. Вначале, как обычно, читается введение в динамику законы Ньютона, дифференциальные уравнения движения свободной материальной точки. Баллистическая задача рассматривается как пример решения второй основной задачи динамики свободной материальной точки.  [c.69]

Основные математические трудности в решении задач динамики трещины связаны с определением напряжений при заданном законе ее движения. Этому и уделяется главное внимание. Если решение (для произвольного закона) построено, то введением критерия достигается замкнутость общей задачи об описании распространения трещины. Некоторые примеры решений общей задачи приведены в 5.7.  [c.174]

Согласно принципу освобождаемости от связей, воздействие связей на материальную точку моделируется силой К, называемой реакцией связей. После введения реакции связей связи можно игнорировать и рассматривать точку как свободную. Уравнение движения точки получим из второго закона динамики. В случае поверхности имеем уравнения  [c.64]

В кинематике все системы отсчета были эквивалентны и точки зрения наблюдателей, связанных с этими системами отсчета, были равноправны если мы и называли движение с точки зрения наблюдателя в основной системе абсолютным, а с точки зрения наблюдателя во вспомогательной системе — относительным, то это просто неудачная терминология, введенная еще Ньютоном мы могли с таким же успехом поменять названия обеих систем отсчета и тогда абсолютное и относительное движения поменялись бы местами. В динамике эта эквивалентность всех систем отсчета и равноправность точек зрения связанных с ними наблюдателей нарушается существует привилегированная система отсчета (инерциальная), в которой закон движения пишется в его простейшей форме (5Л), а в других системах отсчета, движущихся относительно инерциальной, тот же закон пишется в более сложной форме (5.3). Су и ествование такой привилегированной системы отсчета — характерная черта классической динамики об этом подробно будем говорить дальше.  [c.103]


С математической точки зрения рассуждения Гюйгенса, быть может, нельзя признать вполне строгими. Но мы и не стремились к этому. У нас была иная цель показать, что идеи Гюйгенса с необходимостью приводят к закону сохранения импульса и указывают на глубокую связь этого закона с симметриями пространства-времени. Подчеркнем, что мы исходили лишь из принципа относительности Галилея и не использовали основные принципы динамики Ньютона (например, закон равенства действия и противодействия). Более того, попутно мы пришли к целесообразности введения важнейшей динамической величины — массы тела как меры количества вещества — и установили ее аддитивный характер.  [c.10]

В частности, топологич. интегралом движения является число частиц N в классич, динамике, где исключены процессы рождения и уничтожения частиц. Действительно, если конфигурац. пространство N частиц обозначить через Су, то для конфигурац. пространства произвольного числа частиц справедливо представление = lJ iv, N—Q, I, 2..... Это означает, что каждая связная /-тая компонента в указанном разбиении для С характеризуется собств. числом частиц iVj и в классич. динамике отсутствуют непрерывные траектории, связывающие компоненты конфигурац. пространства с различными Nj. Наличие подобного разбиения является необходимым критерием для введения нетривиальных Т. 3. Т. о., закон сохранения числа частиц в классич. динамике есть следствие непрерывности траекторий частиц, и динамич. система с числом частиц Af,, принадлежащая в нач. момент времени компоненте Сц,, во все последующие моменты будет находиться в той же компоненте. Аналогичное утверждение верно и для квантово-механич. систем, получающихся при первичном квантовании классич. системы.  [c.132]

По существу уже в работе 1760 г., посвященной применению принципа наименьшего действия в динамике с использованием исчисления вариаций он с единой точки зрения выводит законы сохранения импульса и момента импульса на основе евклидовой симметрии пространства. Исходным при этом является принцип наименьшего действия, предполагающий выполнение закона сохранения энергии. На этой основе Лагранж получает прообраз своей общей формулы динамики , а затем, рассматривая в качестве допустимых виртуальных перемещений бесконечно малые сдвиги системы вдоль декар товых осей X, у, гж бесконечно малые вращения вокруг этих осей, получает в отсутствие внешних сил законы сохранения импульса и момента импульса. В работе 1777 г. он снова возвращается к открытому им методу вывода законов сохранения из евклидовой симметрии пространства, формулируя, однако, требования симметрии в отношении введенной им (и несколько ранее Д. Бернулли ) потенциальной или силовой функции системы. Б обеих его работах оставалась невыясненной симметрия закона сохранения энергии, а симметрии законов сохранения импульса и движения центра тяжести отождествлялись, совпадая с трансляционной симметрией пространства.  [c.226]

В механике часто учитывают движение ускоренной системы отсчета введением особых сил, так называемых сил инерции. Введение этих сил позволяет сохранить для тел, движущихся относительно неинерцийльных систем отсчета, первый и второй законы динамики в той же самой форме, какую они имели для тел, движущихся относительно инерциальной системы отсчета это в значительной мере упрощает анализ движения в каждом частном случае.  [c.153]

Кинематика оформилась как самостоятельная наука сравнительно недавно. Уже Даламбер указал на важность изучения законов движения как такового. Но первый, кто показал необходимость предпослать динамике теорию геометрических свойств движения тел, был Ампер. Эти свойства были представлены в 1838 г. Факультету наук в Париже Понселе. В этом представлении содержались, в частности, и теоремы о непрерывном перемещении твердого тела в пространстве, за исключением понятия мгновенной винтовой оси, которое было введено Шалем. Формулы, дающие вариации координат точек движущегося в пространстве тела, принадлежат Эйлеру (Берлинская Академия, 1750). Кинематика допускает многочисленные геометрические приложения. К ним относится, например, метод Роберваля построения касательных, теория мгновенных центров вращения, введенная Шалем, частный случай которой был дан уже Декартом в связи с задачей о касательной к циклоиде. К ним же относятся установленные Шалем свойства систем прямых, плоскостей и точек, связанные с движением твердого тела и приводящие наиболее простым образом к понятию комплекса прямых первого порядка. В 1862 г. Резаль выпустил курс Чистой кинематики . С появлением этого курса кинематика окончательно утвердилась в качестве самостоятельной науки.  [c.56]


Глубокое развитие идеи Гаусса дал в 1892—-1893 гг. Герц ), разработавший принцип прямейшего пути ценность принципа Герца состоит в том, что он сводит задачи механики к проблеме геодезических линий и тем самым геометризует классическую динамику. Принцип Герца был бы просто частным случаем принципа Гаусса, если бы он не заменил сил, действующих на систему, связями ее с другими системами, находящимися с ней во взаимодействии. Этим самым Герц как бы изучал только свободные системы, вводя кроме наблюдаемых еще и скрытые массы и скрытые движения . Исторические корни механики Герца содержатся в работах Гельмгольца о скрытых движениях (введение которых у Герца оказывается логически необходимым следствием его концепции основ механики) и в работе Кирхгофа по выяснению основ механики. В своей формулировке каждое естественное движение самостоятельной материальной системы состоит в том, что система движется с постоянной скоростью по одному из своих прямейших путей . Герц объединяет, по существу говоря, закон инерции и принцип наименьшего принуждения. Герц отмечает глубокую связь своего принципа с теорией поверхностей и многочисленные аналогии, которые возникают при его рассмотрении. Принцип Герца находится в тесной связи с геометрической оптикой и теоремой Бельтрами—Липшица, так как между прямейшими путями и нормальными к ним поверхностями в процессе движения имеет место то  [c.849]


Смотреть страницы где упоминается термин ДИНАМИКА ТОЧКИ Введение в динамику. Законы динамики : [c.170]   
Смотреть главы в:

Краткий курс теоретической механики  -> ДИНАМИКА ТОЧКИ Введение в динамику. Законы динамики

Краткий курс теоретической механики 1970  -> ДИНАМИКА ТОЧКИ Введение в динамику. Законы динамики



ПОИСК



Введение

Введение в динамику

ДИНАМИКА Введение в динамику

ДИНАМИКА ДИНАМИКА ТОЧКИ Введение в динамику

ДИНАМИКА Динамика точки

ДИНАМИКА Законы динамики

Динамика точки

Закон точки

Законы динамики



© 2025 Mash-xxl.info Реклама на сайте