Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий армированный волокнами углеродными

Помимо полимерных смол, в качестве матриц композитов используются и другие материалы. Так, известны композиты из алюминия, армированного волокнами бора, из титана, армированного углеродными волокнами (например, с целью приспособления к работе в условиях высоких температур), и т. п.  [c.53]

В настоящее время все большее внимание уделяется композиционным материалам на металлической основе, армированной высокомодульными углеродными волокнами. Совместимость армирующего компонента и матрицы в некоторых случаях достигается введением связующего, функцию которого выполняет покрытие. Металлические покрытия необходимы в тех случаях, когда матрица не смачивает поверхность углеродных волокон при температурах получения композиции (алюминий, магний [21), Кроме того, покрытие углеродных волокон такими металлами, как цинк и медь, может впоследствии служить основой или компонентом основы композиционного материала [3].  [c.129]


Возможны случаи, когда композиция содержит два или три армирующих компонента различной геометрии например, пластик на основе эпоксидной или полиимидной смолы, армированный углеродными волокнами (одномерный компонент) и короткими нитевидными кристаллами карбида кремния (нуль-мерный компонент), или композиция на основе алюминия, армированного борными волокнами (одномерный компонент) и слоями титановой фольги (двухмерный компонент). Такие композиционные материалы следует называть комбинированными.  [c.51]

Если краевой угол на поверхности раздела волокно—матрица 0 < 90°, то расплавленная матрица смачивает волокно. При этом, как правило, происходит незначительное растворение волокна без образования каких-либо соединений. В таких композиционных материалах возникает связь путем растворения и смачивания. Предполагается, что такая связь образуется в композициях на алюминиевой и никелевой основах, армированных углеродными волокнами. Расплавленный алюминий не смачивает углеродные волокна до тех пор, пока поверхность их не будет обработана специальным составом.  [c.59]

Среди различных композиционных материалов с арматурой особое место занимает алюминий, армированный стальной проволокой, кремнеземными волокнами, волокнами бора, усами окиси алюминия (сапфира), углеродными волокнами и бериллиевой проволокой.  [c.124]

Рис. 7.2. Микрофотографии полуфабриката алюминия, армированного углеродными волокнами, в виде проволоки, полученной методом пропитки в расплавленном металле. а - внешний вид (увеличение х 50) б поперечное сечение (увеличение хбО). Рис. 7.2. Микрофотографии <a href="/info/80063">полуфабриката алюминия</a>, <a href="/info/280005">армированного углеродными волокнами</a>, в виде проволоки, <a href="/info/473555">полученной методом</a> пропитки в расплавленном металле. а - внешний вид (увеличение х 50) б <a href="/info/7024">поперечное сечение</a> (увеличение хбО).
Рис. 7.3. Микрофотографии листового полуфабриката алюминия, армированного углеродными волокнами и полученного методом ионной металлизации. а - внешний вид (увеличение х 150) б - поперечное сечение (увеличение х 240). Рис. 7.3. Микрофотографии листового <a href="/info/80063">полуфабриката алюминия</a>, <a href="/info/280005">армированного углеродными волокнами</a> и <a href="/info/473555">полученного методом</a> ионной металлизации. а - внешний вид (увеличение х 150) б - <a href="/info/7024">поперечное сечение</a> (увеличение х 240).

В зависимости от геометрии и свойств полуфабрикатов, являющихся промежуточным материалом для получения армированных металлических изделий, используются различные методы формования металлов, армированных волокнами. Для армированного углеродными волокнами алюминия применяют методы горячего прессования (металлическая матрица остается в твердом состоянии), горячего вальцевания, горячей вытяжки и жидкофазного горячего прессования (металлическая матрица в процессе формования проходит стадию жидкого или жидкокристаллического состояния).  [c.246]

Вальцевание на горячих валках. Так как при вальцевании происходит пластическое течение металлической матрицы под действием высоких напряжений при контакте с валками, процесс формования композиционного материала можно вести с большой скоростью. В процессе горячего вальцевания ввиду кратковременности цикла переработки не требуется создания вакуума. Поэтому данный метод формования металлов, армированных волокнами, является дешевым. Изучается возможность его применения для формования изделий из армированного углеродными волокнами алюминия с использованием полуфабрикатов, полученных путем плазменной или ионной металлизации углеродных волокон  [c.247]

Горячая вытяжка. Этот метод разработан для производства прутков или трубчатых изделий из полуфабрикатов в форме проволоки [8]. Процесс вытяжки следует проводить таким образом, чтобы растягивающие напряжения были направлены в основном вдоль волокон, а изгибающие напряжения были минимальными или отсутствовали. Это дает возможность существенно уменьшить повреждения волокон и дефекты на границе раздела волокно-металлическая матрица. На рис. 7.4 показана общая схема метода горячей вытяжки стержней из композиционного материала на основе алюминия, армированного углеродными волокнами. Заготовку в виде проволоки вакуумируют в оболочке из нержавеющей стали. Вытяжку осуществляют, протягивая такую заготовку через волочильный глазок из карбида кремния, температура которого поддерживается на постоянном уровне, ниже температуры плавления металлической матрицы.  [c.247]

Таблица .4. Прочностные характеристики при растяжении алюминия, армированного углеродными волокнами и полученного методом жидкофазного горячего прессования [4] Таблица .4. <a href="/info/46891">Прочностные характеристики</a> при растяжении алюминия, <a href="/info/280005">армированного углеродными волокнами</a> и <a href="/info/473555">полученного методом</a> жидкофазного горячего прессования [4]
На рис. 7.8 приведены усталостные характеристики алюминия, армированного углеродными волокнами и полученного формованием из полуфабриката в виде проволоки. Усталостные характеристики изделий из полуфабрикатов, полученных методом ионной металлизации.  [c.255]

Рис. 7.8. Относительная усталостная прочность алюминия, армированного углеродными волокнами [13]. Рис. 7.8. Относительная <a href="/info/38158">усталостная прочность алюминия</a>, армированного углеродными волокнами [13].
Алюминиевые матричные сплавы 427 Алюминием плакированный 79, 80 Алюминий, армированны й волокнами борными 424 углеродными 340 Аморфная структура 39 Анизотропия механических свойств 152  [c.499]

Обычные алюминиевые сплавы используются при темпера-турах до 200 С, а КМ на основе алюминия, армированного углеродными и борными волокнами, можно применять для работы при температурах до 450° С никелевые жаропрочные сплавы используют при температурах до 1050° С, а КМ на основе никелевых сплавов, армированных вольфрамовыми волокнами — до температуры 1150 С.  [c.352]


В табл. 7.1 сопоставляются характеристики при растяжении металлов, армированных углеродными волокнами. Как видно из значений, приведенных в таблице, прочность армированного углеродными волокнами алюминия в поперечном направлении ниже, чем у других материалов. В США армированный углеродными волокнами алюминий производится из полуфабрикатов в виде проволоки, полученных методом пропитки в расплаве. Прочность вдоль армирующих волокон у композиционного материала алюминий-углеродные волокна марки Т 300 (на основе полиакрилонитрила) высокая, причем на промежуточное покрытие  [c.248]

Прочностные характеристики при растяжении армированного углеродными волокнами алюминия, полученного методом жидкофазного горячего прессования с использованием охлаждаемых плит, приведены в табл. 7.4. В композиционных материалах на основе высокомодульных графитовых волокон марок НМ/718 и М 40/718 степень реализации прочности волокон составляет приблизительно 80%, а в композиционном материале на основе высокопрочных углеродных волокон марки НТ/718 — 25%. Прочность при растяжении поперек волокон во всех слу-  [c.251]

Графитовые высокомодульные волокна на основе пеков имеют низкую реакционную способность при взаимодействии с алюминием и успешно используются для армирования металлов. В настоящее время на основе пековых углеродных волокон с модулем упругости 714 ГПа получают композиционный материал с алюминиевой матрицей, имеющий прочность при растяжении 1020 МПа и модуль упругости 357 ГПа [10].  [c.254]

Одна из особенностей армированного углеродными волокнами алюминия — его теплостойкость. Вплоть до температур на 50 К ниже, чем температура плавления металлической матрицы, сохраняется приблизительно 70% значения прочности при растяжении материала при комнатной температуре его скорость ползучести в несколько раз меньше, чем у матрицы, и композиционный материал обладает малой ползучестью вплоть до температур на 100 К ниже температуры плавления матрицы [11, 12]. На рис. 7.6 приведены зависимости прочности при растяжении  [c.254]

Среди полимерных материалов, армированных непрерывными волокнами, углепластики - одни из наиболее перспективных. В настоящее время для получения армированных пластиков используются, как известно, не только углеродные волокна. Уже продолжительное время применяются борные волокна, которые по сравнению с углеродными волокнами обладают большей жесткостью. Арамидные волокна, с появлением которых изменились наши представления о свойствах органических волокон, имеют значительно меньшую плотность, чем углеродные волокна. Волокна из карбида кремния и оксида алюминия весьма стойки к воздействию высоких температур. Поэтому углеродные волокна используют тогда, когда они могут успешно конкурировать по свойствам с другими волокнами. Недостатки материалов на основе углеродных волокон можно компенсировать, используя гибридные армированные пластики, которые получают путем сочетания в одном материале углеродных и других типов волокон. Таким образом, при создании современных композиционных материалов применяют дифференцированный подход к выбору волокон или их комбинаций.  [c.263]

Для упрочнения алюминия, магния и их сплавов применяют борные (тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют ag= 2500...3500 МПа, =450 ГПа. Нередко в качестве волокон используют проволоку из высокопрочных сталей. Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана. Для никелевых сплавов повышение жаропрочности достигается армированием их вольфрамовой или молибденовой проволокой.  [c.235]

Примером случая, при котором покрытие было нанесено на 50 % площади вторичной зоны конструкции летательного аппарата, является горизонтальное хвостовое оперение самолета В- , изготовленное из эпоксидной смолы, армированной углеродным волокном (см. гл. 28). В этом конкретном случае токопроводящей дорожкой служит слой алюминия, полученный пламенным напылением. Описанные способы защиты от молний испытывались в полетах в течение многих часов, где они очень успешно применялись на стабилизаторах самолета Л14, 50 % наружной поверхности которых были покрыты полосами алюминиевой фольги. В последнее время появилось несколько статей, в которых описаны различные типы применяемых схем для защиты от молний, технология изготовления которых уже освоена, а также приве-  [c.285]

Эванс и Брэддик [134] исследовали коррозионное поведение алюминия, армированного углеродным волокном, и алюминиевого 8 227  [c.227]

Рис. 5.1. Примеры диаграмм напряжение — деформация, полученных для различных композитов а — эпоксидная смола, армированная стеклотканью с атласным переплетением б — гибридный композит, армированный в одном направлении углеродным волокном и стекловолокном (в качестве матрицы использована эпоксидная смола) в — алюминий, армированный в одном направлении борволокном, покрытым карбидом кремния г — композиция Ni—Nb , застывшая в одном направлении (кривая /), твердый раствор Nb в никеле Ni с весовым содержанием 0,5% (кривая 2) й — полимерный бетон с весовым содержанием песка 20%, СаСОз —40%- Рис. 5.1. Примеры <a href="/info/23901">диаграмм напряжение</a> — деформация, полученных для различных композитов а — <a href="/info/33628">эпоксидная смола</a>, армированная стеклотканью с <a href="/info/63230">атласным переплетением</a> б — <a href="/info/146953">гибридный композит</a>, армированный в одном направлении <a href="/info/39107">углеродным волокном</a> и стекловолокном (в качестве матрицы использована <a href="/info/33628">эпоксидная смола</a>) в — алюминий, армированный в одном направлении борволокном, <a href="/info/135409">покрытым карбидом кремния</a> г — композиция Ni—Nb , застывшая в одном направлении (кривая /), <a href="/info/1703">твердый раствор</a> Nb в никеле Ni с весовым содержанием 0,5% (кривая 2) й — полимерный бетон с весовым содержанием песка 20%, СаСОз —40%-

В табл. 6.3 приведены в качестве примера механические свойства композитов, армированных высокопрочными волокнами (углеродным волокном и борволокном) [6.16]. Из приведенных данных видно, что у этих материалов ударные вязкости оказываются сравнительно низкими. На рис. 6.24 показано изменение ударной вязкости в зависимости от содержания стекловолокна в различных композитах, составленных на основе термопластичных пластмасс [6.17]. Пример металлического композита приведен на рис. 6.25. Это алюминий, армированный борволокном, покрытым карбидом кремния [6.18]. Для него можно найти, как влияет на ударную вязкость направление волокна в зависимости от направления удара.  [c.167]

Кроме перечисленных выше в патентной литературе приводится большое число различных составов для холодной обработки давлением. Так, например, для холодной штамповки легких металлов — раствор мыла с оливковым маслом алюминия — стеарат цинка алюминиевых сплавов и меди — раствор ланолина в трихлорэтилене цинка— растительное масло, розмариновое масло, графит с добавкой буры стали — порошок дисульфида молибдена. Предлагаются также смазки, армированные волокнами, например, смазка, содержащая смазочное масло, углеродное волокно, мыло и твердый смазочный материал, графит или MoSi. Загустителем служит мыло (10—50% об.). Углеродное волокно, предпочтительно длиной 0,25 см, предварительно обрабатывают HNOa н солью высшей кислоты или амина для придания ему олеофильности. В качестве смазочного масла используется поли-фениловый эфир, диэфир или силиконовая жидкость.  [c.62]

Для алюминия, армированного углеродными волокнами, эффективный метод — формование изделий из полуфабрикатов, полученных металлизацией в расплаве, или из слоистых материалов на основе сырых листов и алюминиевой фольги. При жидкофазном горячем прессовании таких слоистых полуфабрикатов, заключенных в вакуумиро-ванную оболочку, жидкая металлическая матрица легко проникает в межволоконное пространство, образуя армированный металлокомпозит.  [c.248]

Таблица 7.2. Характеристики при растяжении полуфабрикатов в виде провопо-ки из алюминия, армированного углеродными волокнами [э] Таблица 7.2. Характеристики при растяжении полуфабрикатов в виде провопо-ки из алюминия, армированного углеродными волокнами [э]
Таблица 7.3. Характеристики при растяжении алюминия, армированного углеродными волокнами полученного формованием из полуфабриката в виде проволки [э] Таблица 7.3. Характеристики при растяжении алюминия, <a href="/info/280005">армированного углеродными волокнами</a> полученного формованием из полуфабриката в виде проволки [э]
На рис. 7.5 приведены рентгенограммы алюминия, армированного углеродными волокнами и полученного методом жидкофазного горячего прессования. Хорошо видно, что на карбонизованных волокнах марки WH образуется AI4 з, а для графитизированных волокон марки W3H пики AI4 3 не наблюдаются (во всяком случае можно утверждать, что они перекрываются фоном). Приведенные на рис. 7.5 данные объяс-  [c.253]

I - алюминий, армированный углеродными волокнами и изготовленный из полуфабриката в виде проволоки, полученной методом пропитки в расплавленном металле 2 - композиционный материал 6061А1 — борные волокна.  [c.256]

Можно ожидать, что коррозионные свойства армированных металлов при контакте металлической матрицы с углеродными волокнами будут ухудшаться вследствие электрохимической коррозии. В работе [14] исследовалась стойкость алюминия, армированного углеродными волокнами, к климатическому воздействию путем выдержки его в атмосферных условиях и в морской воде. Шлифуя внешнюю поверхность исследуемых образцов, авторы работы [14] обнажали волокна и исследовали электролитическую коррозию на границе раздела волокно-алю-миниевая матрица. После выдержки в морской воде в течение одного года не наблюдалось значительного снижения прочности композиционного материала и коррозия внутри материала почти не развивалась. Рднз1 о при наличии дефектов на границе раздела волокно-матрица вблизи поверхности алюминия, армированного углеродными волокнами, коррозия в зоне этих дефектов идет интенсивно. Поэтому при эксплуатации изделий из армированных волокнами металлов следует, по-видимому.  [c.256]

В работе [38] исследовали различные технологические способы получения композиционных материалов с металлической матрицей, армированной углеродными волокнами, — горячее прессование волокон, предварительно покрытых матричным или вспомогательным металлом или сплавом, электроформование, горячую экструзию смеси волокон с порошком матричного сплава и жидкофазную пропитку. Хорошие результаты получены при электролитическом осаждении на углеродные волокна таких металлов, как медь, никель, свинец и олово отмечаются значительные трудности при нанесении"алюминиевого покрытия. В работе сделана попытка совместного осаждения алюминия и коротких углеродных волокон из эфирных растворов в инертной атмосфере. Углеродные волокна предварительно измельчались до длин порядка 1 мм (использовали волокна с предварительной поверхностной обработкой и без нее, а также с медным покрытием толщиной 2 мкм) и затем вводились в электролит. Главной трудностью при реализации процесса было комкование волокон, приводящее к закорачиванию электрической цепи. Избежать этого явления можно лишь при уменьшении концентрации волокон в электролите, в связи с чем оказалось невозможным получение образцов композиции с содержанием армирующих волокон более  [c.368]

Для армирования металлических КМ обычно используют непрерывные волокна углеродные (УВ), борные (В), оксида алюминия (AI2O3), карбида кремния (Si ), карбида бора (В4С), нитрида бора (BN), диборида титана (TiB2), оксида кремния (Si02). Также в качестве волокон применяют металлическую тонк>то проволоку, полученную методом волочения из стали, W, Ti, Мо и Be. Реже используют специально выращенные нитевидные кристаллы разных материалов.  [c.870]

Металлы, армированные волокнами - композиционные материалы с металлической матрицей и упрочнителями в виде волокон. Упрочнителями служат волокна бора, углеродные волокна, нитевидные кристаллы тугоплавких соединений, вольфрамовая или стальная проволока. Матричный материал выбирают из учета назначения композиционного материала (коррозионная стойкость, сопротивление окислению и др.). В качестве матриц используютлегкие и пластичные металлы, алюминий, магний и их сплавы. Количество упрочнителя составляет по объему 30-50%. Металлы, армированные волокнами, применяются в авиационной и ракетной технике.  [c.171]


Система алюминий — углеродное волокно. По данным [90] алюминий практически не растворим в углероде, а растворимость углерода в алюминии не превышает 0,05% по массе при 1300— 1500° С. Главной реакцией, определяющей взаимодействие углеродного волокна с алюминием, является реакция образования карбида AI4 3. Обычно алюминиевые композиции, армированные углеродными волокнами, получают методами пропитки расплавом [169, 211]. Углеродные волокна не смачиваются расплавами на основе алюминия до 1100° С. При этой температуре волокна растворяются в расплаве на 40—60% своего объема и полностью теряют прочность. Количество карбидной фазы в материале, полученном при температуре самопроизвольного смачивания, настолько велико, что при последующем хранении образцов в течение нескольких дней они самопроизвольно разрушаются в результате выделения ацетилена при реакции карбида с влагой. Если пропитываются волокна с никелевым или медным покрытием, то последнее интенсивно растворяется в расплаве, и волокна разунроч-няются после контакта с расплавом в течение 2—5 мин на 40— 50% исходной прочности. Подобное же явление отмечено в работе [128], авторы которой обеспечивали смачивание путем химической обработки поверхности углеродных волокон.  [c.85]

Для улучшения смачиваемости углеродных волокон расплавленным алюминием разработан способ последовательной обработки поверхности волокон расплавами Na, Sn - 2%Mg и алюминиевых сплавов [18]. При армировании углеродными волокнами сплавов на основе Д1 и Mg наряду с улучшением смачиваемости волокон необходимо предотвращать снижение их прочности, которое может происходить при контакте с раплав-ленньш металлом. Для решения этой задачи требуются дальнейшие исследования, которые могли бы дать практические рекомендации по сохранению прочности углеродных волокон при контакте с расплавами металлов.  [c.38]

Непрерывные волокна из оксида алюминия имеют либо структуру шпинели ( ) -А12 0з), либо структуру а-Л12 0з. Для армирования материалов могут использоваться оба указанных типа непрерывных волокон из оксида алюминия [24—25]. Их физико-механические свойства приведены в табл. 8.8, а на рис. 8.12 показаны их микрофотографии, полученные методом растровой электронной микроскопии. Волокна из оксида алюминия со структурой шпинели изготавливают путем спекания в воздушной среде волокон, полученных прядением по мокрому методу из раствора, содержащего полимер алюминийорганического соединения и кремнийорганическое соединение. Такие волокна состоят из микрокристаллов размером порядка 10 нм, сохраняют стабильную структуру до высоких температур и содержат около 15 масс. % оксида кремния. Волокна из а-Д12 Оз также изготовляют спеканием в воздушной среде волокон, полученных прядением из суспензии мелкодисперсного порошка а-Л12 0з в основном хлориде алюминия. Агломераты частиц имеют размер 0,5 мкм. Достоинствами этих двух типов армирующих волокон из оксида алюминия по сравнению с углеродными волокнами являются электроизоляционные свойства, бесцветность, стабильность свойств на воздухе при высоких температурах и при контакте с расплавленными металлами. Их недостаток — сравнительно высокая плотность. Различие структуры указанных двух типов непрерывных волокон из оксида алюминия приводит к различию их физических свойств. Волокна со структурой шпинели имеют большую прочность и поддаются текстильной переработке для получения ткани и т. д. Эти волокна имеют меньшую плотность, чем волокна из a-Al2 О3. С другой стороны, волокна из a-Al2 О3 имеют более высокий модуль упругости. Различия этих двух типов волокон подобны различиям между двумя типами углеродных волокон карбонизованными и графитизированными.  [c.280]

Хотя наилучший эффект от армирования металлов и сплавов углеродными волокнами был получен в случае матрицы на основе алюминия, значительные усилия предпринимались также при разработке и исследовании других углеметаллических систем, главным образом, с никелевой матрицей, а также с матрицами на основе меди, магния, свинца, цинка, олова и бериллия.  [c.360]

Бланкенбург [12j получал углеалюминиевый композиционный материал, смешивая алюминиевый порошок с размером частиц 5—8 мкм с нарубленными углеродными волокнами диаметром 7—8 мкм и длиной около 2,5 мм. Смесь с 8—15 об.% углеродных волокон подвергалась затем экструзии при температуре 600° С. В процессе экструзии наблюдалось интенсивное дробление волокон на отрезки длиной 30—50 мкм и их ориентирование вдоль направления экструзии. Степень дробления волокон возрастала с увеличением объемного содержания армирующих волокон в заготовке. Предел прочности при растяжении экструдированных образцов из матричного сплава составил 90 МН/м (9,2 кгс/мм ), а в результате армирования возрос до 120 МН/м (12,3 кгс/мм ) и даже до 170 МН/м (17,3 кгс/мм ) после термообработки композиционного материала. В этих экспериментах была доказана возможность образования карбида алюминия (АЦСз) при температурах ниже 550° С.  [c.365]

Упрочнение алюминия и его сплавов более дорогими волокнами В, С, AI2O3 повышает стоимость КМ, но при этом улучшаются некоторые его свойства. Например, при армировании борными волокнами модуль упругости увеличивается в 3 - 4 раза, углеродные волокна способствуют снижению плотности. На рис. 14.36 и ниже показано влияние объемного содержания волокон бора Vb на прочность и жесткость композиции алюминий — бор  [c.465]


Смотреть страницы где упоминается термин Алюминий армированный волокнами углеродными : [c.352]    [c.192]    [c.225]    [c.20]    [c.243]    [c.247]    [c.247]    [c.256]    [c.234]    [c.242]   
Структура и свойства композиционных материалов (1979) -- [ c.85 , c.87 , c.113 , c.137 ]



ПОИСК



Алюминий — бор (волокно)

Армирование

Армирование волокнами

Волокна

Волокна углеродные



© 2025 Mash-xxl.info Реклама на сайте