Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитные Группы

Магнитная Группа энергия Марка сплава  [c.115]

Имеются три типа магнитных групп.  [c.661]

Ero композиция с Ri — элементом обычной кристаллографической группы — образует элемент магнитной группы Ж. Композиция с a обозначается следующим образом  [c.363]

Особенности расчета уравнений электромагнитного поля нрн малых значениях электропроводности. Разностные уравнения электромагнитного ноля, которые решаются в магнитной группе  [c.331]

Конструктивно трансформаторы для питания сварочной дуги можно разделить на следующие основные группы 1) трансформаторы с дросселями, выполненные в виде двух раздельных аппаратов или в виде одного аппарата 2) трансформаторы с развитым магнитным рассеянием 3) трансформаторы с подмагничиванием постоянным током.  [c.131]


Магнитные сплавы подразделяют на две группы, резко отличающиеся формой гистерезисной кривой и значениями основных магнитных характеристик. К первой группе относятся магнитнотвердые сплавы (рис. 400,а).  [c.541]

В отличие от магнитнотвердых материалов — сплавов для постоянных магнитов, гре требуется высокая коэрцитивная сила, большую группу магнитных сплавов представляют так называемые магнитномягкие сплавы, которые в первую очередь должны иметь низкую коэрцитивную силу.  [c.546]

Парамагнитная восприимчивость х многих веществ, содержащих металлы переходной группы и редкоземельные элементы, хорощо описывается законом Кюри, согласно которому х обратно пропорциональна Т. Однако вычислить магнитную восприимчивость реального кристалла очень сложно и хотя роль основных влияющих факторов видна вполне ясно, детали проблемы трудны и часто недостаточно понятны. В основном по этой причине магнитная термометрия не применяется для первичных измерений температуры, хотя существует и вторая трудность, состоящая в том, что абсолютные измерения магнитной восприимчивости очень сложны. Как мы увидим ниже, константы в функциональной зависимости х от 7 приходится находить градуировкой по другим термометрам. Хотя магнитная термометрия не является первичной в строгом смысле, она занимает важное место в первичной термометрии, выступая в качестве особого интерполяционного и в некоторых случаях экстраполяционного термометра. Рассмотрим кратко основные факторы, определяющие температурную зависимость парамагнитной восприимчивости конкретных кристаллов и это сделает ясной специфическую роль магнитной термометрии.  [c.123]

Различают три группы магнитных сталей и сплавов магнитно-твердые, магнитномягкие и парамагнитные.  [c.307]

Сплавы этой группы обладают высоким р. и незначительной величиной В/, их применяют для изготовления деталей аппаратов и приборов, работающих при малых Н электромагнитных полей (реле, электроизмерительные приборы, магнитные экраны, сердечники катушек, трансформаторов и др.).  [c.280]

Ко второй группе относятся трансформаторы с нор мал.ь-н ы м магнитным рассеянием и дополнительной реактивной катушкой — дросселем (типов СТН, ТСД).  [c.59]

Существующие в настоящее время магнитные материалы подразделяют на три основные группы магнитотвердые, магнитомягкие и материалы с прямоугольной петлей гистерезиса (ППГ).  [c.134]

Число электронов в атоме, их распределение по слоям и группам определяет химические, оптические, электрические и магнитные свойства атомов.  [c.7]


Громадное большинство оптически изотропных тел обладает статистической изотропией изотропия таких тел есть результат усреднения, обусловленного хаотическим расположением составляющих их молекул. Отдельные молекулы или группы молекул могут быть анизотропны, но эта. микроскопическая анизотропия в среднем сглаживается случайным взаимным расположением отдельных групп, и макроскопически среда остается изотропной. Но если какое-либо внешнее воздействие дает достаточно ясно выраженное преимущественное направление, то возможна перегруппировка анизотропных элементов, приводящая к макроскопическому проявлению анизотропии. Не исключена возможность и того, что достаточно сильные внешние воздействия могут деформировать даже вначале изотропные элементы, создавая и микроскопическую анизотропию, первоначально отсутствующую. По-види-мому, подобный случай имеет место при одностороннем сжатии каменной соли или сильвина (см. 142.) Достаточные внешние воздействия могут проявляться и при механических деформациях, вызываемых обычным давлением или возникающих при неравномерном нагревании (тепловое расширение и закалка), или осуществляться электрическими и магнитными полями, налагаемыми извне. Известны даже случаи, когда очень слабые воздействия, проявляющиеся при течении жидкостей или пластических тел с сильно анизотропными элементами, оказываются достаточными для создания искусственной анизотропии.  [c.525]

В основе SU (6)-симметрии лежит предположение об отсутствии в мире элементарных частиц спин-орбитального взаимодействия. В этом случае кварк должен характеризоваться уже не тремя, а шестью степенями свободы. SU (6)-симметрия — это симметрия относительно группы преобразований в шести измерениях. SU (б)-симметрия позволяет получить дополнительные результаты по сравнению с SU (3)-симметрией. В частности, она предсказывает связь между магнитными моментами нуклонов  [c.326]

Кристаллы с замороженными орбитальными и спиновыми моментами. К этому типу веществ относят кристаллы, в которых имеется столь сильная внутренняя магнитная связь, что межатомные силы замораживают как орбитальный, так и спиновый моменты. Этот случай осуществляется в солях переходных металлов группы платины и группы палладия.  [c.329]

Наибольший практический интерес вызывают в настоящее время аморфные сплавы на основе переходных металлов группы железа. Они относятся к классу магнитомягких материалов и отличаются высокой магнитной проницаемостью и низкой коэрцитивной силой. Значения коэрцитивной силы этих сплавов зависят от химического состава сплавов. По сравнению с поликристалличе-скими магнитомягкими материалами аморфные сплавы обладают рядом преимуществ более низкими потерями по сравнению с трансформаторной сталью, повышенной прочностью, более низкой чувствительностью магнитных свойств к деформациям. Важным преимуществом является более низкая стоимость производства. Все это открывает широкие перспективы использования аморфных магнитных сплавов.  [c.375]

Лит. Ландау Л. Д., Л и ф ш и ц Е. М., Электродинамика сплошных сред, 2 изд., М., 1982 Смит Я,, В е йи X.. Ферриты, пер. с англ., М., 1962. Ю. П. Ирхин. МАГНИТНАЯ СИММЕТРИЯ — раздел симметрии кристаллов, учитывающий специфику их магнитных свойств, а именно в М. с. принимается во внимание симметрия уравнений движения по отношению к операции обращения времени Л, под действием к-рой координаты всех точек кристалла остаются неизменными, а скорости меняются на противоположные. Соответственно, под действием операции R средняя по времени микроскопическая плотность заряда р(х, у, z), описывающая обычную (электрическую) структуру кристалла, не меняется, и кроме р рассматривается микроскопическая средняя плотность магнитного момента т [х, у, z) [или, что эквивалентно, тока(гг, у, г)], меняющая знак под действием В. Группой магнитной симметрии кристалла называется множество преобразований (пространственных и комбинаций из R и пространственных преобразований), оставляющих инвариантными функции р х, I/, а) и ш (х, у, z). Если представить операцию Я как замену чёрного цвета на белый, то магнитные группы совпадают с шубпиковскими группами симметрии и антисимметрии.  [c.661]


Первые пять неприводимых представлений могут характеризовать состояния иоиов с четным числом электронов, а последние три — с нечетным числом электронов. Цифры, стоящие вверху слева, характеризуют размерность неприводимых представлений, и, следовательно, степень вырождения соответствующих электронных состояний в поле Оц. Магнитное поле, в которое помещается кристалл, понижает симметрию, причем в зависимости от ориентации кристалла в поле мояаю рассматривать, как отмечалось выше, три основные группы 4h, и Сзь- Все неприводимые представления (2) в этих новых магнитных группах распадаются на одномерные неприводимые представления, каледое из которых характеризует трансформационные свойства волновых функций зеемаиовских подуровней.  [c.102]

От материалов для постоянных магнитов требуется высокое значение коэрцитивной силы и остаточной индукции, а также их постоянство во времени. Остальные магнитные характеристики для этой группы сплавов практического значения не имеют. Рассмотрим высококоэрцитнвные сплавы, используемые для  [c.542]

Из изложенного следует, что лишь сплавы Э. З и Э4 являются феррит-ными. Магнитные характеристики у них получаются выше, но они более хрупки. Сплавы группы ЭЗ и Э4 называются трансформаторным железом, а Э1 и Э2 — динамной сталью. В соответствии с этим трансформаторное железо (основное применение — сердечники трансформаторов), обладающее более высокими магнитными свойствами, имеет более ннзкие механические свойства, чем динамная сталь (главное применение — детали динамомашин).  [c.548]

Некоторые высоколегированные стали выделены в особые группы, их обозначают буквами, которые ставятся впереди Ж — хромистые нержавеющие стали Я — хромоникелевые нержавеющие стали Е — электротехнические стали с особыми магнитными свойствами Р — быстрорежущие стали Ш — шарикоподшипниковые стали и т. д. Например, стали ЖЬ Я1, Е12, Р]8 и ШХ15.  [c.176]

В соответствии с этим сварочные трансформаторы подразделяют на две основные группы. К первой группе относят трансформаторы с повышенным. магнитным рассеянияем. Трансформаторы этой группы можно разделить на три оснорных типа трансформато--ры с магнитными шунтами, подвижными катушками и витковым (ступенчатым) регулированием (трансформаторы типов ТС, ТД, СТШ, ТСК, ТСП).  [c.59]

Конструктивный вид модели определяется техническими возможностями выполнения катушек и организации их взаимного перемещения в течение длительного времени. Рассмотрим вращающуюся модель ЭМП с двумя произвольными группами катушек, одна из которых жестко закреплена на статоре, а другая — на роторе. Статор и ротор обычно выполняют из магнитных материалов, но в принципе они могут быть и безжелезными . Если катушки сосредоточенные, то их закрепляют на сердечниках (полюсах). Если же катушки распределенные, то они размещаются в специальных пазах или на поверхности статора (ротора). В зависимости от этого можно различать следующие конструктивные формы вращающейся модели 1) симметричные, когда и статор и ротор имеют цилиндрическую форму (все катушки распределенные) 2) несимметричные первого рода, когда статор (или ротор) имеют выступающие полюса с сосредоточенными катушками 3) несимметричные второго рода, когда и статор и ротор имеют полюсную форму. Таким образом, обобщенная модель может иметь три конструктивные модификации (рис. 3.1).  [c.56]

Трубка телевизионная приемная цветная масочная — трехлучевой кинескоп для приема цветных телевизионных изображений, действие которого основано на пространственном сложении цветов на экран трубки нанесена мозаика, состоящая из групп кружков — люминофоров по три кружка, светящихся красным, зеленым и синим светом число таких групп равно числу активных элементов изображения (около 380 000). Три электронных прожектора направляют свои лучи так, что они попадают в одно и то же отверстие маски, которая расположена перед экраном и число отверстий в которой соответствует числу активных элементов изображения. Лучи, прошедшие через отверстия маски, попадают каждый на свой кружок люминофора все три луча управляются одной магнитной системой и корректируются специальными магнитами. Интенсивность свечения различных цветов управляется независимо цветовыми сигналами. Таким образом, получаются три независимых совмещенных цветоделенных изображения, видимы как одно целое. На основе таких трубок работает совместимая система цветного телевидения, используемая в США и Японии. При передаче черно-белого изображения все три прожектора работают и управляются одновременно, в результате чего все три цвета складываются в пропорции, создающей изображение, близкое к черно-белому недостаток — технологическая сложность изготовления описанных трубок [9 ].  [c.161]

Исследования, проведенные с помощью магнитного альфа-спектрометра, показывают, что альфа-активные ядра испускают, как правило, не одну, а несколько монохроматических групп а-частиц. Например, ядра испускают три группы а-частиц с энергиями 4,180 4,135 и 4,195 Мэе, а ядра Ро испускают а-частицы с энергией 8,780 Мэе и три группы длиннопробежных а-частиц с энергиями 9,492 10,422 10,543 Мэе и т. д. Отдельные группы а-частиц (а-линии) являются весьма строго монохроматическими (правильнее, моноэнергетическими ). Например, для линий 84Po отношение AS/S — 10 . Это указывает на поразительную определенность (четкость) уровней энергии в ядре. Наиболее интенсивная группа (а-линия) обычно связана с переходом из основного состояния материнского ядра в основное состояние дочернего ядра. Такой переход является наиболее вероятным для четно-четных ядер.  [c.225]

Если через газовую смесь пропустить электрический ток (возбудить в газе разряд), то возникающее вокруг тока магнитное поле стремится сжать этот ток и плазма стягивается в узкий шнур, (рис. 108). Это явление самостягивания группы заряженных частиц называется пинч-эффектом. Напряженность магнитного поля на поверхности шнура  [c.329]


Существование антипротона впервые было установлено в 1955 г. группой физиков Э. Сегре, О, Чемберленом н другими — в Беркли (США) на ускорителе — беватроне, ускоряющем протоны до й, 5 6,3 Бэв. В камере ускорителя протоны, ускоренные до энергии (4,3 6,3) Бэа, бомбардировали медную мишень М (Си) (рис. 120). При столкновениях рождались я -мезоны и антипротоны р. Этот пучок отрицателыю заряженных частиц отклонялся магнитным полем беватрона полем дополнительного магнита М в направлении, указанном на рисунке. В получегшом пучке частиц содержится огромное количество л -мезонов. Так, например, при S,, — 6,2 Бэв на каждый возникающий р рождается около 60 ООО п -мезонов. Поэтому дальнейшая задача сводилась к выделению антипротонов из общего пучка отрицательных частиц.  [c.374]

Аналогичные трудности возникают и во многих других исследованиях, посвященных освобождению термоядерной энергии в управляемом процессе. Пока еще трудно сказать, когда будет решена эта задача. Сложных нерешенных проблем еще очень много. Мы не имеем возможности даже касаться их в настоящей книге (тем более, что физика плазмы и не является разделом ядерной физики) и отсылаем интересущихся к специальной и научно-популярной литературе . Отметим только, что в 1963 г. опубликованы очень обнадеживающие результаты, полученные в СССР в Институте атомной энергии им. И. В. Курчатова. Группе физиков, работающих под общим руководством Л. А. Арцимовича, удалось получить плазму с температурой 40- 10 ° и плотностью 10"> частиц/см и сохранить ее в течение сотых долей секунды (до 0,06 сек) в объеме, равном нескольким десяткам литров. Этот успех был достигнут благодаря использованию магнитной ловушки с комбинированными магнитными полями, напряженность которых растет во все стороны от местонахождения плазменного шнура.  [c.483]

Существенным недостатком упомянутых выше обычных искровых камер является развитие разряда в направлении электрического поля . В связи с этим хорошие треки получаются только для частиц, движущихся под малыми углами 6 к Е. Этот недостаток был преодолен в двух типах камер, разработанных в СССР. В 1963—1964 г. А. И. Алиханян с сотр. разработали искровую камеру с очень большим (десятки сантиметров) меж-электродным промежутком, которая детектирует частицы, движущиеся под углами 0 до 40—50° В те же годы в группах Б. А. Долгошеина и Г. Е. Чиковани была разработана стример-ная камера, разряд в которой обрывается на стадии стримера (искровой канал отсутствует). Благодаря этому стримерная камера не имеет ограничения по углу 6. Обе камеры работают в магнитном поле и позволяют измерять импульсы с максимальными значениями до 500 Faej .  [c.165]

Наибольшими возможностями для исследования е—N)-рассеяния в настоящее время обладает группа физиков, работающая на станфордском двухмильном линейном ускорителе электронов с максим альной энергией = 21 Гэв. Ускоритель представляет собой вакуумную трубу длиной в две мил (отсюда название ускорителя) с 245 клистронами и многочисленными фокусирующими магнитными линзами (через каждые 100 м). На выходе имеется система из фокусирующих и откло-няющих магнитов и коллиматоров. Мишени — жидководородная и жидкодейтериевая.  [c.275]

Методом Лтг-поиска были сформированы 128 точек, равномерно распределенных в пространстве параметров. В каждой из этих точек были определены значения следующих функций цели коэффициента гармоник спектра магнитных вибровозмущающих сил к , амплитуды силы второго порядка на частоте 1300 Гц, близкой к зубцовой, б зоо-2> амплитуды силы второго порядка на частоте 1400 Гц (314оо-2> амплитуды силы первого порядка на частоте 25 Гц (22 5-1 > коэффициента насыщения машины А , максимального значения индукции в воздушном зазоре Функции цели делятся на две группы к , (21зоо-2>  [c.213]

Кроме диа- и парамагнетиков существует большая группа веществ, обладающих спонтанной намагниченностью, т. е. имеющих не равную нулю намагниченность даже в отсутствие магнитного поля. Эта группа магнетиков получила название ферромагнетиков. Для них зависимость / (Я) является нелинейной функцией, и полный цикл перемагничения описывается петлей гистерезиса (рис. 10.2). В этих веществах магнитная восприимчивость сама зависит от Н.  [c.320]

В табл. 10.1, заимствованной из книги Ч. Киттеля, экспериментальные значения эффективного числа магнетонов Бора для ионов переходных элементов группы железа (изучались соответствующие соли) сравниваются с вычисленными по формуле (10.28). Видно, что для солей переходных элементов экспериментальные значения магнитного момента лучше согласуются с теоретическими, предсказываемыми формулойр = 21- 5(SI), а не формулой (10.28). Это свидетельствует о том, что орбитальный момент в этом случае как бы совсем отсутствует. В такой ситуации говорят, что орбитальные моменты заморожены .  [c.328]

Кроме ферромагнетиков существует больпгая группа магнитоупорядоченных веществ, в которых спиновые магнитные моменты атомов с недостроенными оболочками ориентированы антипараллельно. Антипараллельная ориентация спиновых магнитных моментов, как мы видели, возникает при отрицательном обменном взаимодействии (Л<0). Так же, как и в ферромагнетиках, магнитное упорядочение имеет место здесь в интервале температур от  [c.341]

Краткий обзор теории Ван-Флека [6, 7]. Низший энергетический уровень свободного иона, характеризующийся полным угловым моментом /, величина которого может быть вычислена по правилу Хунда при анализе спектров, является (2/+ 1)-кратно вырожденным. Магнитное поле снимает это вырождение, образуя группу (2/-t l) эквидистантных уровней, отстоящих друг от друга на расстояние, где i = е/2тс) (/г/2-п )—магнетон Бора, g —фактор расщепления Ланде. При g=2 и Н — 0ООО эрстед это расстояние равно - 0,9 Упомянутые уровни характеризуются величиной nij, которая принимает значения /,/ — 1,. .., —соответствующие значениям Wygp-B компонент [1я магнитного момента в направлении Н. Полная намагниченность грамм-моля будет в. чтом случае равна  [c.384]

Состояние магнитного иона может быть найдено с помощью уравнения Шредпнгера Жф = 1>,где Ш—гамильтониан. Для свободного иона уровни могут быть вырождены если же ион находится в поле кристалла, то степень вырождения в общем случае уменьшается но-разному для различной симметрии поля. При повороте координат на заданный угол (например, тс/2 вокруг оси четвертого порядка я/3 вокруг гексагональной осп) или отран<е-нии в плоскости и т. д. результирующее состояние системы должно совпадать с исходным. Этим свойством должны обладать и собственные функции уравнения Шредингера. Решения уравнений Шредиигера образуют группы с помощью теории групп можно выяснить некоторые особенности решений в кристаллическом поле, даже не зная точно формы потенциальной функции и ее величины. Так, например, состояние с /= /2, которое для свободного иона шестикратно вырождено в кристаллическом поле с кубической симметрией, расщепляетсм на один дублет и один четырехкратно вырожденный уровень. Взаимное расположение уровней и расстояние между ними нельзя определить, ие зная подробно функции V.  [c.386]


Смотреть страницы где упоминается термин Магнитные Группы : [c.756]    [c.664]    [c.634]    [c.30]    [c.69]    [c.756]    [c.283]    [c.112]    [c.705]    [c.124]    [c.192]    [c.302]    [c.382]    [c.388]   
Диффузионная сварка материалов (1981) -- [ c.183 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте