Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принципы обработки информации

Периферийные процессоры могут быть специальные, реализующие единственный алгоритм обработки данных, и универсальные (матричные), реализующие ограниченный набор стандартных алгоритмов. Наибольшее распространение получили универсальные периферийные процессоры. Часто такие процессоры имеют матричную структуру и реализуют конвейерный принцип обработки информации.  [c.72]

Прогресс в развитии МП будет определяться как новыми микроэлектронными технологиями их изготовления, так и новой архитектурой МП, реализующей разл. способы обработки информации параллельную, ассоциативную и др. Причём поскольку технология в ближайшие годы позволит достигнуть предела по параметру плотности логич, вентилей на кристалл (определяется межатомными размерами кристалла), на первое место выйдет разработка новых принципов обработки информации и архитектур МП.  [c.141]


Перейдем теперь к принципам обработки информации с помощью когерентных волновых полей. Обработка информации методами когерентной оптики и голографии включает в себя следующие три основные операции  [c.199]

Ветвью развития измерителей тока могут стать миниатюрные ("карманные") специализированные приборы со стрелочной или цифровой индикацией. Расширение номенклатуры микросхем, их дальнейшая интеграция позволят создать простые измерители тока, построенные на аналоговых принципах обработки информации. При этом точность таких  [c.229]

Вместе с тем, все новые и новые практические задачи поиска, разведки и добычи нефти и газа в сложных геологических условиях, требуют использования новых специальных методологических подходов, применения новых физических принципов и соответствующего математического аппарата и создания на их основе новых систем наблюдения физических полей, новых принципов обработки информации и нового программного обеспечения. К числу недостаточно изученных геофизических эффектов взаимодействия упругих волн с геологическими средами отнесем разнообразные перекрестные эффекты - эффекты преобразования энергии акустического поля в энергию электромагнитных излучений, гидродинамическую энергию, тепловую энергию. Недостаточно изучены эффекты переизлучения упругих волн (из низкочастотных в высокочастотную область) на разнообразных неоднородностях (границах, ансамблях трещин, каверн, включений и т.п.). В ближайшие годы, по-видимому, внимание исследователей привлекут эффекты автоколебаний, возникающих в пластах, насыщенных углеводородными флюидами и водой.  [c.3]

Локальные вычислительные сети САПР должны обеспечивать использование режимов пакетной и диалоговой обработки, разделения времени, виртуальной памяти экономичную обработку информации по принципу наиболее важные процессы САПР выполняются техническими средствами с развитым программным обеспечением и высокой производительностью, наименее ответственные — на дешевых мини- и микро-ЭВМ высокую надежность и достоверность функционирования, высокую производительность применение разнообразного проблемно-ориентированного ПО, централизованных и локальных БД с необходимым объемом памяти работу с автоматизированными рабочими  [c.78]

Создаваемые на базе МВК Эльбрус вычислительные комплексы имеют высокие показатели надежности и достоверности обработки информации за счет модульного принципа построения и наличия системы реконфигурации, которая при возникновении сигнала неисправности от системы аппаратного контроля модуля автоматически исключает его из состава комплекса и восстанавливает прерванный вычислительный процесс.  [c.334]


Изложены вопросы автоматизации дуговых сталеплавильных и вакуумных дуговых печей, установок электрошлакового переплава И внепечного вакуумирования. Описаны автоматизированные системы управления технологическими процессами (АСУ ТП). Показаны особенности технологического процесса как объекта управления и сформулированы основные принципы и алгоритмы управления.. Приведены конструкционные разработки систем автоматического управления электросталеплавильными установками. Рассмотрены информационные потоки в АСУ ТП, описаны основные средства передачи, и обработки информации. Показано использование вычислительной техники для управления технологическими процессами.  [c.45]

САПР следует рассматривать как систему, основанную на применении современных математических методов и средств вычислительной техники в процессе принятия проектных решений, в организации и управлении проектированием. В САПР с помощью ЭВМ автоматизированы подготовка и обработка информации, выбор принципа действия проектируемых машин и принятие решений, выполнение расчетно-вычислительных работ и подготовка документации. Важным фактором оценки эффективности САПР является возможность вмешательства оператора на любой стадии работы для принятия решений и его корректировки. При этом все изменения в проектную документацию, расчеты и т. п. вносятся автоматически.  [c.372]

При многоступенчатом способе сбора первичные данные обрабатываются на месте их получения, после чего они в обобщенном виде поступают для окончательной обработки и получения характеристик надежности. К недостаткам такого способа сбора информации относятся малая оперативность, большая возможность искажений и потеря части информации. Кроме того, получение некоторых данных при этом способе либо затруднено, либо совсем невозможно. Более перспективным является централизованный принцип сбора и обработки информации, при котором первичные данные о работе и неисправностях изделий без какого-либо предварительного обобщения поступают непосредственно с объекта сбора на место окончательной обработки. Это повышает качество и оперативность прохождения информации и служит предпосылкой для создания полуавтоматических и автоматических устройств сбора и обработки информации о надежности на базе информационно-вычислительных центров. Принципы сбора информации о надежности можно сформулировать следующим образом сбор информации должен производиться централизованно по единой системе система должна предусматривать применение машин, автоматизирующих процесс учета, сбора и обработки информации о надежности.  [c.59]

В работе [8] отмечается, что изложенный принцип обработки сигналов измерительной информации, заключающийся в суммировании поступивших импульсов с последующим перемножением суммы на значение каждого импульса в принятой системе единиц, обеспечивает минимальную погрешность, вносимую при цифровой обработке результатов измерения.  [c.244]

Для решения этих задач нужно, во-первых, подходящее информационное обеспечение, т. е. дополнительные датчики и банки данных (или знаний), во-вторых, соответствующее программное обеспечение, т. е. пакет интеллектуальных программ обработки информации, и, в-третьих, достаточно мощная ЭВМ для реализации этих интеллектуальных программ в сочетании с обычным системным и прикладным обеспечением станочных систем АПУ. Решение всех этих вопросов наталкивается на большие трудности и сопряжено со значительными затратами. Тем не менее концепция интеллектуального управления активно развивается [24, 100, 118, 121]. Ее развитие привело к новому представлению об эффективных принципах и средствах автоматического управления станками, связанных с созданием систем АПУ с элементами искусственного интеллекта. При этом введение дополнительных элементов искусственного интеллекта диктуется в каждом конкретном случае производственной необходимостью и функциональными возможностями станка.  [c.128]

В вычислительной технике развитие многоканальных систем привело к появлению многомашинных комплексов вычислительных средств и мультипроцессорных вычислительных систем [26, 81], иногда содержащих десятки параллельных трактов обработки информации. Многоканальный принцип организации широко применяется в технике связи, при создании автоматических линий в машиностроении, энергетических систем, систем машин в горнодобывающей промышленности, на транспорте и т. д. Несмотря на различия в технической реализации и областях применения, надежность этих систем можно анализировать едиными методами. Однако в дальнейшем для определенности все задачи надежности рассматриваются на примере информационных и вычислительных систем.  [c.153]


Микроскопический подход к описанию явления движения жидкости в пористой среде очень сложен. В принципе, имея информацию о системе, можно рассчитать траекторию движения каждой частицы жидкости. Однако такой подход практически бесполезен по причине того, что определение точной границы раздела твердое тело — жидкость невозможно кроме того, граница, если бы даже она была известна, настолько сложна, что задача не поддавалась бы математической обработке. Если бы даже можно было получить решение для траекторий отдельных частиц жидкости, то оно не представляло бы практической ценности, так как необходимы макроскопические или интегральные характеристики.  [c.439]

Особую группу средств измерения температуры по излучению составляют тепловизоры, осуществляющие анализ температурных полей и цифровую обработку информации в температурном диапазоне от -50 до +3000 °С. По принципу действия тепловизоры представляют собой сканирующую систему, на выходном дисплее которой воспроизводится анализируемое температурное поле (термограмма). Порог температурной чувствительности тепловизоров 0,1—0,2 С, расстояние до объекта не менее 0,4 м.  [c.341]

В какой-то мере вводной является и вторая глава книги, в русском переводе названная Основы голографии . Эта глава содержит математические, физические и методологические предпосылки, знание которых лучше поможет пониманию принципов голографии. В частности, много места уделено интегральным преобразованиям, которые используются при осуш,ествлении голографического процесса и в методах оптической обработки информации. Важную физическую основу голографии представляют собой явления интерференции и дифракции, достаточно полно рассмотренные Б. Томпсоном применительно к задачам голографии.  [c.7]

Хрупкие разрушения, происходящие в судах, возникали не вследствие отсутствия достаточной конструктивной прочности. Это значит, что основные принципы конструирования могут продолжать развиваться по существующим направлениям, совершенствоваться с помощью современных методов сбора и обработки информации, вычисления фактических размеров элементов и распределения материала.  [c.408]

Восьмой принцип —стандартизация форм документов и методов их обработки. Выбор правильной формы документа и расположения на нем информации является важным условием рационализации всей информационной системы. В настоящее время к форме документа предъявляются возросшие требования в связи с расширением обработки информации три помощи ЭВМ.  [c.72]

Девятый принцип — механизированная обработка информации. Технической базой современного управления являются системы обработки данных, которые в своем развитии проходят ряд этапов. Постоянно усложняясь, они преобразуются в человеко-машинные управляющие системы в той степени, в какой с новой техникой переработки информации совмещается новая технология, организация и методология планирования и управления.  [c.72]

Все описанные выше способы обработки информации, воспроизводимой с магнитной ленты, принципиально ограничены по скорости процессом формирования общей картины рельефа магнитной записи, характеризующего качество исследуемого сварного соединения. В связи с этим представляет интерес изучение оптических систем сортировки дефектности сварных соединений (распознавания образцов), основанных на принципе голографии.  [c.234]

Основные положения системы сбора и обработки информации о надежности изделий установлены ГОСТ 16468—70. Ими определены цели оценки и проведения работ по сбору и обработке информации о надежности изделий, а также организационные и методические принципы сбора и анализа информации о надежности и капитально отремонтированных изделий машиностроения.  [c.140]

Метод фильтрации пространственных частот, или пространственная фильтрация, позволяет вести оптическую обработку информации. На принципах пространственной фильтрации основан метод фазового контраста наблюдения прозрачных объектов, предложенный Ф. Цернике.  [c.367]

Принцип единого метода управления. Протоколы ЛВС могут применять централизованные и децентрализованные формы управления одноузловой структурой моноканала. Принцип единого метода управления проявляется в выборе одной из этих форм, обеспечивающей достаточную надежность работы СПД и максимальную загрузку каналов связи. При этом для определения метода управления. следует учи--тывать структуру соединений, их длину, число абонентов i сложность обработки информации с помощью ресурсе ЛВС.  [c.80]

Из-за нестационариости процесса на выходе детектора в бетатронном дефектоскопе рекомендуется статистически обрабатывать сигнал с выхода схемы отношений амплитуд двух каналов. Учитывая, что амплитуды импульсов на выходе схемы отношений можно считать независимыми от изменений параметров дефектоскопа, в этом случае схемы обработки информации строят на принципах обнаружения сигнала по критериям знаков Вил консона,Смирнова и другим статистическим тесгам, устойчивым к изменению закона распределения сигияля (рис. 12 и 13).  [c.380]

Диагностика места расположения усталостной трещины основана на принципе пространственно временной селекции регистрируемых сигналов АЭ [127, 128]. На объект устанавливается множество датчиков в виде ат1тенной решетки. Ячейки решетки выбирают по геометрии различной формы в зависимости от алгоритма обработки информации. При визуализации результатов анализа по накоплению повреждений в наиболее повреждающейся зоне их представляют в виде кластера сигналов АЭ наибольшей интенсивности. Достоверность диагностирования зоны появления и развития трещины существенно зависит от спектра шумов и метода их фильтрации.  [c.72]


Резивовский А.Ф. Пять принципов организации и функционирования эффективной системы сбора и обработки информации о надежности // Надежность и контроль качества.  [c.453]

Среди электромагнитных приборов для контроля твердости наиболее широко применяют структуроскоп ВС-ЮП. Он предназначен для контроля прутков, труб, уголков, болтов, шпилек и т. п. из сталей 10, 25, 35, 45 (ГОСТ 1050—74), а также из других сталей, для которых может быть установлена однозначная связь электромагнитных характеристик с твердостью. Частота тока питания проходного преобразователя 175 Гц. Принцип работы прибора основан на возбуждении в испытуемом токопроводящем изделии вихревых токов и анализе изменения вторичного поля вихревых токов в зависимости от измеряемого параметра (твердость). Для анализа применяют амплитудно-фазовый метод обработки информации, которая сравнивается с сигналом от эталонного образца. Прибор мо>кет работать в двух режимах — по первой п по третьей гармонике. Трудность нсполь-зоваипя электромагнитных структу-роскопов для контроля твердости заключаете в необходимости отстройки от многих влияющих на результат измерения неконтролируемых параметров (зазор, диаметр, длина изделия, вариации химического состава, удельная электрическая проводимость и т, д.). В настоящее время такие приборы, кап и магнитные, могут быть рекомендованы в качестве индикационных средств, а уточнять их метрологические характеристики можно только после соответствующих экспериментальных статистических исследований для стали выбранной марки.  [c.274]

ЭВМ, управляющие ЭВМ и микропроцессоры, совершило иерево-рот в принципах автоматизации процессов обработки информации, проводимой в ГАП с целью подготовки производства, планирования, диспетчеризации, управления, учета и контроля за состоянием оборудования, инструмента, оснастки и систем управления.  [c.7]

Дело в том, что использование современных дорогостоящих ЭВМ большой мощности для индивидуального управления одним станком или роботом было бы слишком расточительным многие функциональные возможности таких универсальных ЭВМ при этом просто не нужны. Кроме того, последовательный принцип действия больших ЭВМ может приводить к значительному запаздыванию при вычислении адаптивного программного управления и, как следствие, к управлению по устаревшей информации. Для организации индивидуального управления в реальном времени целесообразно распараллелить вычислительные процессы путем распределения отдельных функций (алгоритмов) обработки информации и управления между микропроцессорами и микроЭВМ. Принципиальная возможность такого распараллеливания обеспечивается модульной иерархической структурой адаптивных систем программного управления, представленной на рис. 3.2. Аппаратно-программная реализация этой структуры сводится к конструированию мультимикропроцессорной системы (ММПС) индивидуального управления и разработке ее математического обеспечения.  [c.95]

Применение ЦМД. Свойства ЦМД (устойчивость в нек-ром интервале полей смещения, подвижность, возможность управлять их движением, способность находиться в разд. состояниях и т.д.) определяют их применимость в устройствах обработки информации. ЦМД-устройство состоит из ряда функциональных элементов, обеспечивающих генерацию, продвижение, переключение и детектирование ЦМД. Идея таких y Tpofl te состоит в следующем. Пусть в плёнке к.-л. способом сформирован канал, вдоль к-рого могут перемещаться с заданной скоростью ЦМД (канал продвижения ЦМД). Информация представляется в двоичном коде по принципу наличия — отсутствия ЦМД. В определ. позициях канала формируют генератор и детектор ЦМД, выполняющие те же функции, что головки записи и считывания в устройствах с подвижными магн. носителями информации. Генератор преобразует поступающие на его вход от внешнего электронного устройства электрич. импульсьЕ в ЦМД, детектор производит обратное преобразование. Важное отличие ЦМД-ует-роиств заключается в том, что в них не требуется механич. перемещений к.-л. элементов.  [c.437]

Охватить все существующие и разрабатываемые в настоящее время носители оптической информации в рамках одной главы не представляется возможным. Многие интересные и важные аспекты этой проблемы, к сожалению, остались вне поля зрения. Так, совершенно не затронуты вопросы использования галогенидосе-ребряных фотографических слоев, которые в настоящее время являются основным видом носителей, используемых при оптической обработке информации, и ряд других не менее важных материалов. Этим вопросам можно было бы посвятить отдельную книгу. Здесь же мы кратко остановились лишь на наиболее новых и перспективных, с нашей точки зрения, исследованиях и разработках. Бурное развитие этой области приведет к созданию эффективных материалов и систем и на основе рассмотренных возможностей и, конечно, на основе новых принципов и идей, которые, несомненно, появятся в ближайшем будущем.  [c.168]

Системы управления промышленными роботами [5, 8] представляют собой многопроцессорные управляющие устройства, построенные по иерархическому принципу. На верхнем уровне управления осуществляются расчет траектории движения рабочего органа формирование команд, управляющих движением звеньев робота логическая обработка информации от периферийных устройств комплекса диалоговый режим работы оператора через видеотерминальное устройство обмен информацией с ЭВМ верхнего уровня и внешним программоносителем (НГМД, КНМЛ) управление роботом через пульт ручного управления диагностика работы системы калибровка координат звеньев [II]. Нижний уровень управления используется для решения задачи управления движением звеньев в соответствии с программой, поступающей с верхнего уровня.  [c.131]

Децентрализованные системы управления, используя принцип параллельной обработки информации, обеспечивают высокое быстродействие системы управления технологиче-  [c.367]

Обратимся теперь к решению задачи наведения. Необходимо отметить, что в зависимости от целевой задачи конкретного ЛА и аппаратных требований могут использоваться системы наведения, от-личающиеся принципом действия, составом измеряемых параметров, алгоритмами предварительной обработки информации и т. п. Кроме того, зачастую практически невозможно разделить задачу наведения и навигации, а также задачу управления, поскольку задача наведения тесно связана с принятием решения и выработкой сигналов командного управления. Тем не менее, в рамках обсуждаемой технологии рассмотрим иерархическую цепочку классов, реализуюш,их алгоритмы наведения (рис. 6.13).  [c.241]

Во многих отношениях оптическое волокно аналогично полым волноводам с внутреиними поверхностями из хорошо проводящего металла, широко применяемым в технике СВЧ. Электромагнитные поля в этих системах имеют подобную структуру. Распространение света в цилиндрическом прозрачном волокне или прямоугольной диэлектрической пленке носит волноводный характер. Физические принципы действия оптических волноводов и других тонкопленочных структур составляют теоретическую базу новой бурно развивающейся области прикладной физики, получившей название интегральной оптики. Интерес к оптическим способам передачи и обработки информации быстро растет, что обусловлено преимуществами оптической связи в таких системах, где требуется высокая надежность, помехозащищенность, большая скорость передачи информации при малых габаритах и массе. Основные трудности реализации таких систем связаны с потерями световой энергии в диэлектрическом световоде, вызванными поглощением или рассеянием света в волокне, а также нерегулярностями границы раздела между сердцевиной и оболочкой. Эти потери предъявляют очень жесткие требования к технологии изготовления световодов. В результате интенсивной исследовательской работы в 70-х годах была разработана технология получения оптических волокон и световодных кабелей с малыми потерями из кварца и специальных стекол, что открыло путь к практической реализации оптических систем дальней связи.  [c.157]


В этой ситуации состояние всей цепочки кубитов можно описать как суперпозицию из 2 двоичных чисел с N знаками. При обработке информации (записанной в двоичных числах) в такой цепочке кубитов, с ней будет совершаться последовательность унитарных преобразований, причём параллельно будет обрабатываться все 2 вариантов исходных данных. Итак, в такой цепочке кубитов реализуется квантовый параллелизм , существенно сокращающий время квантовых вычислений. Согласно [224], состояние квантового компьютера является суммой огромного числа слагаемых, каждое из которых представляет собой произведение состояний вида 0) или 1), т. е. на языке А. Эйнштейна, Б. Подольского и Н. Розена [225] такое состояние квантового компьютера является сложным перепутанным состоянием. При операции обработки информации над этим состоянием производится серия конкретных унитарных преобразований, а затем осуществляется измерение нового полученного состояния. В итоге мы убедились, что работа квантового компьютера базируется на операциях с перепутанными состояниями цепочки кубитов. Одна из трудностей создания квантового компьютера состоит в обеспечении квантовой когерентности большого числа кубитов (например, атомов или ионов), подразумевающей отсутствие любых неконтролируемых взаимодействий кубитов друг с другом, а также со средой. Эти взаимодействия вызывают быстрый распад суперпозиционных состояний и превращение их в смесь состояний (этот процесс получил название декогеренция ). Способы устранения декогеренции обсуждаются в обзоре [226]. Существенный вклад в развитие теории квантовой информации внёс Б. Б. Кадомцев [227]. Полезное обсуждение физических основ современных информационных процессов содержится в издании [228]. В целом, ситуация с созданием твердотельных квантовых процессоров сложная и подавляющее число работ в этом направлении посвящено обсуждению физических принципов их функционирования. Остановимся на некоторых возможных вариантах оптических процессоров, с помощью которых предполагается реализовать операции квантовой логики.  [c.190]


Смотреть страницы где упоминается термин Принципы обработки информации : [c.378]    [c.139]    [c.421]    [c.526]    [c.491]    [c.95]    [c.9]    [c.30]    [c.25]    [c.186]    [c.119]    [c.305]    [c.220]    [c.179]   
Системы очувствления и адаптивные промышленные работы (1985) -- [ c.13 , c.22 ]



ПОИСК



Информация

Обработка информации



© 2025 Mash-xxl.info Реклама на сайте