Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поле температурного градиента

Поле температурного градиента является векторным, поэтому  [c.80]

Насколько известно, поверхностные свойства этих сплавов (поверхностное натяжение на границе расплав — газ), а также плотность не измерены. Тем более это относится к свойствам межфазной границы твердых и жидких фаз в этих системах. Качественные эксперименты, касающиеся поведения капель золота на поверхности кремния и золото-германиевого расплава на германии (движение капли в поле температурного градиента) были выполнены в [2, 41. Прочность германия в среде золото-германиевого расплава исследована в [16].  [c.4]


Рис. 4. Закристаллизовавшиеся капли германия на поверхности монокристалла германия (плоскость 111) в поле температурного градиента (X 100). Рис. 4. Закристаллизовавшиеся капли германия на поверхности монокристалла германия (плоскость 111) в <a href="/info/839">поле температурного</a> градиента (X 100).
ТЕМПЕРАТУРНОЕ ПОЛЕ ТЕМПЕРАТУРНЫЙ ГРАДИЕНТ  [c.21]

При зонной плавке с градиентом температуры жидкая зона, окруженная твердой фазой, перемещается в поле температурного градиента. Это перемещение есть результат динамического равновесия трех процессов растворения твердой фазы на высокотемпературной границе зоны, диффузии растворенных атомов в жидкой фазе и их кристаллизации на низкотемпературной границе [2].  [c.321]

В ХОЛОДНОМ конце проводника, вызывает градиент электрического потенциала. Отрицательный заряд на холодном конце нарастает до момента достижения динамического равновесия между числом электронов с большей энергией, диффундирующих от горячего конца к холодному под действием градиента температуры, и числом электронов, перемещающихся от холодного конца к горячему под действием градиента потенциала электрического поля. Этот градиент потенциала существует, пока есть градиент температуры, и называется термоэлектрической э.д.с. Отсюда следует, что термо-э.д.с. не может возникнуть без температурного градиента.  [c.268]

При исследовании термопарой температурного градиента в печи всегда затруднительно ответить на вопросы о причине изменения показаний температуры после перемещения термопары. Этой причиной могут быть как неоднородное температурное поле в печи, так и неоднородность электродов самой термопары. К счастью, обычно удается найти верхнюю границу влияния неоднородностей. Если наблюдаемые изменения э.д.с. в зависимости от положения термопары явно больше, чем эта граница, то можно быть уверенным в наличии неоднородного температурного поля в печи. В противном случае определенного заключения об источнике изменений э.д.с. и форме температурного поля в печи сделать нельзя.  [c.270]

Завершая рассмотрение вопросов градуировки, вновь отметим важность проблемы неоднородности термопар. Измеряемая э. д. с. термопары возникает в той ее части, которая находится в области температурного градиента. Неоднородности материала термопар приводят к тому, что измеренная э.д. с. оказывается зависящей не только от разности температур между спаями, но и от расположения неоднородностей в температурном поле. Практически это означает, что градуировка термопары точна лишь для той печи или ванны, где она выполнялась, и даже только для момента исходной градуировки. При извлечении термопары из печи часто возникает достаточное число вакансий в решетке для заметного сдвига градуировки. Окисление или фазовые превращения (например, в термопаре типа К) также приводят к неравномерным изменениям свойств, зависящим от температурного градиента градуировочной печи [8].  [c.303]


Поскольку в явлениях турбулентного переноса эффекты молекулярной вязкости и теплопроводности обычно пренебрежимо малы в сравнении с явлениями вихревого перемешивания (исключая случаи очень больших градиентов скорости и температуры), пульсации температуры в основном связаны с вихревым перемешиванием элементов жидкости, при котором сохраняются их первоначальные температуры. Если элементы жидкости имеют различные температуры, то необходимо ввести средний температурный градиент в потоке с осредненными свойствами. Можно предполагать поэтому, что статистические свойства пульсации температуры зависят от двух факторов 1) от среднего температурного градиента в поле потока и 2) от характера поля скоростей. Далее на простом примере будет показано, какую роль играют средний температурный градиент для пульсаций температуры и соотношения между соответствующими статистическими свойствами для переноса количества движения и тепла. Такой подход был впервые использован Коренном 1130] при изучении теплообмена в условиях изотропной турбулентности. Рассмотрим изотропный и однородный турбулентный поток с постоянным средним температурным градиентом вдоль оси у, перпендикулярной направлению основного потока — оси х. Необходимые допущения для описания турбулентного поля течения сводятся в данном случае к следующим  [c.83]

С другой стороны, наступление момента конкуренции процессов Z)iA 4-сборки можно интерпретировать как приближение в системе к порогу перколяции в отношении напряженности и взаимодействия локальных силовых полей от сформированных фрактальных кластеров. Достижение же критического значения концентрации фрактальных кластеров конденсированной фазы обусловливает перколяционную структуру электрических взаимодействий между ними. Для систем, погруженных в пространство с евклидовой размерностью Е=Ъ фрактальная размерность частиц, соответствующая порогу перколяции, Df 2,5 [35]. В условиях стационарного воздействия на систему отрицательного температурного градиента (охлаждения системы внешней средой) описанное состояние системы катализирует таким образом дальнейший процесс агрегации по ССЛ-механизму. Подобным образом развивается волнообразный цикличный характер дальнейшей цепочки фазовых переходов второго рода (рис. 3.13), обусловливающий наиболее эффективный путь диссипации энергии посредством структурообразования по иерархическому принципу в открытой неравновесной системе охлаждаемого расплава.  [c.135]

Современная теория переноса электронов в проводниках дает возможность получить выражение для абсолютной термо-э. д. с. S. При этом предполагается, что температурный градиент, возникающий в образце металла во время опыта, и действующее на пего электрическое поле вызывают пренебрежимо малое возмущение колебаний решетки. Выражение для. 5 имеет вид )  [c.213]

В случаях электропроводности металлов или теплопроводности неметаллов поле (или температурный градиент) приводит к постоянному возрастанию J, которое должно быть уравновешено процессами, в которых J не сохраняется. В случае теплопроводности металлов возрастание J уравновешивается термоэлектрическим полем, возникающим прп наложении условия, заключающегося в том, что электрический ток должен обращаться в нуль.  [c.286]

Кельвин на метр равен температурному градиенту поля, в котором на участке длиной I м в направлении градиента температура изменяется на 1 К.  [c.94]

Вычислив температурное поле в узлах расчетной сетки, далее можно определить температурные градиенты и плотности теплового потока  [c.282]

Выражение температурного градиента определяется из уравнения температурного поля (15.10)  [c.220]

Значение температурного градиента находим из уравнения температурного поля (15.14)  [c.222]

Далее из уравнения температурного поля (15.29) находим выражение температурного градиента  [c.224]

Нагнетательные скважины для термического воздействия на пласт, а также эксплуатационные скважины представляют собой многоколонные конструкции, состоящие из сочетания последовательно расположенных слоев металла, жидкости или газа, цементного камня и горной породы. Для определения прочностных показателей элементов ствола скважины необходимо знать их температурное поле, особенно нестационарное температурное поле в первые моменты ведения процесса, так как в эти моменты температурный градиент достигает наибольшего значения и, следовательно, наибольшие напряжения в элементах скважины.  [c.269]


Температурное поле и температурный градиент  [c.271]

Температурные градиенты определяются из уравнений (4-2) и 4-3). После некоторых преобразований полу-  [c.154]

Процесс теплопроводности неразрывно связан с распределением температуры внутри тела. Поэтому при его изучении прежде всего необходимо установить понятия температурного поля и градиента температуры.  [c.8]

Термические напрян<ения в покрытии могут возникать при равномерных температурных полях из-за разности коэффициентов линейного расширения, а также при нестационарных температурных полях из-за наличия температурных градиентов.  [c.54]

Для отдельных точек тела, а в общем случае и для различных точек одной и той же изотермической поверхности температурный градиент различен не только по направлению, но и по размеру. Градиент тем больше, чем гуще расположены изотермы. Совокупность значений температурных градиентов в различных точках температурного поля образует векторное поле температурных градиентов. Температурное поле полностью определяет поле градиентов, так как направление последних должно совпадать с касательными к кривым, нормальным к изотермическим поверхностям (рис. 21.2), а значения их обратно пропорциональны отрезкам между двумя смежными изотермическими поверхностями. Эти нормальные к изотермам кривые носят название линий теплового тока. Вектор grad всегда направлен по касательной к линии теплового тока.  [c.273]

Таким образом, скалярному полю температур соответствует векторное поле температурных градиентов, а условие возникновения теплового потока можно формулировать как условие неравенства нулю величины grad .  [c.10]

Наличие объемных сил произвольной природы требует схемы интегрирования по всему объему тела. Однако в случаях, когда объемные силы либэ обусловливаются установившимся полем температурных градиентов, либо являются фильтрационными или дентробежными силами, интегралы по объему or объемных сил можно свести к эквивалентным интегралам по поверхности. Следовательно, задача снова сводится лишь к интегрированию по границе.  [c.165]

Наиболее важным з ни.х является. интенсивное тепловое воздействие дуги, в результате которого на кромках реза образуется пленка оплавленного металла, а в массе детали возникает быстро перемещающееся вместе с дугой температурное поле. Температурный градиент этого поля наиболее высок в плоскости дуги (перпендикулярно резу). Здесь на сравнительно малом расстоянии, определяемом в основном свойствами металла и скоростью резки, температура падает от точки плавления (на кромках) до температуры окружающей среды. Позади этой плоскости температурное поле расширяется и выравнивается, что завершается равномерным нагревом всей детали до некоторой температуры, постепенно снижающейся до исходного состояния. В результате нагрева и последующего охлаждеьия наряду с оплавлением металла происходит изменение его структуры. Неравномерность нагрева может вызвать появление местных напряжений, в отдельных случаях (при обра-зован и хрупких структур) сопровождающихся возникновением трещин. Тепловое воздействие сопровождается также, как это было указано выше, термодиффузионными процессами в металле, обусловливающими образование внутренней химической неоднородности.  [c.139]

Движение теплоносителя в большинстве случаев осуществляется по трубе или около плоской стенки. Тепловое поле — температурный градиент стенки — направлено от ее наружной стороны к внутренней. Давление при-лоа.-чо к теплоносителю и к стенке градиент давления р направлен вдоль I гсики. Тепловое поле проявляется в направлении движения теплоносителя. Направление вынужденного перемещения теплоносителя — вдоль стенки в направлении уменьшения давления.  [c.128]

Ре сл = 4 000 с учетом влияния гсл/ ст- Такое влияние симплекса LjDt на теплообмен следует объяснить процессом тепловой стабилизации движущегося слоя. Вследствие сравнительно низкой эффективной теплопроводности сыпучей среды вначале все падение температуры происходит в пристенной зоне. Повтому снижение температурного напора происходит медленнее, чем температурного градиента асл заметно падает по ходу слоя. Этот процесс протекает до момента стабилизации температурного поля, граница которого пока не установлена, хотя диапазон исследованных L/D = 42,5- 276. Подчеркнем, что длина участка тепловой стабилизации всегда значительно превышает длину участка стабилизации скорости слоя ( 9-6). Это должно свидетельствовать о существенной неэквивалентности температурных и скоростных полей в движущемся слое.  [c.340]

Характер поля скоростей подводимого потока при данном режиме течения зависит только от форм и геометрических параметров аппаратов и подводящих участков. Если формы и параметры заданы, то с этой точки зрения безраз шчно, какой технологический процесс происходит в аппарате (в некоторых случаях следует только учесть влияние эффекта температурного градиента). Это очень важно, так как можно решать вопрос о распределении скоростей и способах выравнивания их по сечению, а также о выборе схем подводящих и отводящих участков в достаточно обобщенном виде. Результаты теоретических исследований и экспериментов со схематизированными. моделями можно распространить на аппараты разнообразного технологического назначения, если только их формы и геометрические параметры, а также условия подвода потока к рабочим элементам или изделиям и соответственно условия отвода потока будут близки к исследованным.  [c.10]

Будем рассматривать металл как жесткую решетку атомов, между которыми газ свободных электронов может двигаться под действием электрических и магнитных полей и температурных градиентов. При наличии перепада температуры в проводнике электроны диффундируют от горячего конца к холодному, передавая решетке часть своей кинетической энергии. Это — процесс теплоИроводности. Избыток электронов, возникший  [c.267]


Производная йа1йЬ, стоящая в правой части соотношения (1.3.12), отлична от нуля при наличии концентрационных или температурных градиентов на поверхности раздела фаз. Используя непрерывность поля температур, пишем граничное условие к уравнению теплопереноса (1. 3. 3)  [c.12]

Важно отметить, что, хотя приводимый ана.лиз в целом опирается на систему с заданным средним температурным градиентом в основном поле потока, резу.льтаты не зависят от этого градиента, за исключением лишь интенсивности пульсаций в жидкой фазе. Разумеется, из рассмотрения частного с.лучая нельзя делать каких-либо общих выводов. Можно, однако, утверждать, что решающую роль в механизме турбулентного теп.лопереноса играет природа пульсаций поля скоростей.  [c.86]

Рассмотрим, например, расчет пластины, работающей в глубоком вакууме (74]. На рис. 5-1 показана математическая модель пластины с покрытием. При анализе теплопередачи будем считать температурное поле в сечении равномерным и одномерным, что при малом отношении толн ины к длине дает достаточно точные результаты. В случае одномерности предполагается, что температурный градиент покрытия в направлении х является очень малым по сравнению с температурным градиентом покрытия, нормальным к поверхности. Следовательно, в покрытии рассматривается только составляющая теплового потока от пластины к окружающей среде и все тепло в направлении х проходит по металлу подложки. Введем следующие предположения передача тепла окружающей среде происходит только излучением среда имеет температуру, равную 0 К радиационная поверх-  [c.111]

При рассматриваемых условиях теплота может распространяться только вдоль оси X, и температурное поле будет одном<фным. Температурные градиенты вдоль остальных осей координат равны нулю, следовательно,  [c.273]

Температурное поле, необходимое для определения температурного градиента на поверхности теплообмена, может быть найдено по распределению температуры на поверхностях стенки, участвующей в теплообмене, которое можно измерить, например, с помощью термопар. Место заделки одного спая термопары показано на рис. 14.6. Термопарные провода 1 подводят к месту крепления спая на поверхности стенки 3 по фрезерованным канавкам 2, которые заподлицо с поверхностью заделывают в зависимости от температурного режима либо термоцементом, либо эпоксидной смолой. Для исключения утечки тепла по термопарным проводам (последнее может привести к существенным ошибкам в измерении температуры) их стараются располагать по изотермическим поверхностям.  [c.280]

Температурный градиент. Одной из вал<ных характеристик температурного поля является температурный градиент, представляющий собой вектор, направленный по нормали к изоп2срмической поверхности в сторону возрастания температуры.  [c.163]

Расчет по графическому методу при С = 64 и 5 = 10 (рис. 6.5, а) дает значение Q = 56 800 Вт расчет через температурные градиенты по вышеприведенным формулам (температурное поле, необходимое для расчета (grad I Д и определенное численно с шагом Л/16, представлено на рис. 6.6) дает значение Q = 54 ООО Вт, т. е. результаты практически совпадают.  [c.91]

Из уравнения (2.31) следует, что для определения коэффициента теплоотдачи необходимо найти температурный градиент среды вблизи поверхности. Температурный градиент может быть найден из дцфференциального уравнения энергии (2.27). Поскольку в это у])авнение входят составляющие скорости, для определения температурного поля необходимо еде составить дифференциальное урав-н( ние, позволяющее найти поле скоростей.  [c.155]

Третий — с электромагнитным формообразователем. Для обеспечения одинаковых тепловых условий в зоне выращивания каждого из прутков предусмотрен привод вращения пьедестала. Печь снабжена специальным индуктором с несколькими (по числу выращиваемых кристаллов) кольцевыми витками и расположенной над индуктором медной водоохлаждаемой щайбой, имеющей над каждым из витков индуктора отверстие, соосное с витком. Эта шайба играет роль системы короткозамкнутых витков, концентрирующих злектромагнит-ное поле под фронтом кристаллизации и ослабляющих его над этим фронтом. Тем самым повышается осевой температурный градиент в растущих кристаллах и увеличивается скорость кристаллизации. Формообразование одинаковых жидких столбиков расплава обеспечивается естественной симметрией ориентации сил поверхностного натяжения и симметричной радиальной направленностью ЭМС. Вращения выращиваемых прутков не требуется. Оплавлеше торца пьедестала осуществляется также полем описанного одночастотного формообразующего индуктора. Технические показатели процесса группового выращивания круглых прутков с электромагнитным формообразованием превосходят полученные первыми двумя методами, а оборудование проще, чем при других конструкциях, и реализуется на базе серийно выпускаемой высокочастотной установки Криеталл-502 [75].  [c.112]


Смотреть страницы где упоминается термин Поле температурного градиента : [c.324]    [c.147]    [c.295]    [c.153]    [c.253]    [c.95]   
Теплотехника (1986) -- [ c.80 ]



ПОИСК



Градиент

Градиент температурный

Основы теплопередачи Температурное поле температурный градиент

Поле градиент

Поля градиент

Поля температурные

Температурное поле

Температурное поле и температурный градиент

Температурное поле и температурный градиент

Температурное поле. Градиент температуры

Температурное поле. Градиент температуры. Тепловой поток

Теплопроводность Температурное поле, градиент температуры и тепловой поток

Теплопроводность. Температурное поле. Градиент температуры



© 2025 Mash-xxl.info Реклама на сайте