Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газов реальных термодинамика

К реальным газам в технической термодинамике принято относить перегретые пары некоторых жидкостей. В отличие от воображаемого идеального газа реальный газ при соответствующих условиях может быть сжижен, т. е. сконденсирован, или же переведен в твердое состояние.  [c.98]

В развитие результатов, описанных в Главе 4.11, работы по оптимальному профилированию сопел велись в ЛАБОРАТОРИИ в нескольких направлениях. Применительно к классическим соплам Лаваля программы оптимального профилирования сверхзвуковых частей были дополнены предварительным построением изэнтроп газов с реальной термодинамикой. Расчеты с их использованием показали, что замена реального газа совершенным, со средним показателем адиабаты, определенным по критическим и близким к выходным давлениям и плотностям, практически не сказывается на результатах оптимального профилирования. Наряду с профилированием в предположении плоской поверхности перехода, использовались реальные неравномерные распределения параметров в минимальном сечении, полученные установлением по времени. Было показано, что учет неравномерностей параметров в критических сечениях обычно используемых сопел при профилировании сверхзвуковых частей также практически не сказывается форме оптимальных контуров.  [c.364]


Введение понятия идеального газа в термодинамике дает возможность найти более простые аналитические зависимости между параметрами. Степень расхождения в свойствах идеальных и реальных газов зависит всякий раз от конкретных условий, в которых находится газ. Водород, гелий, азот и другие газы с малой молекулярной массой даже при комнатной температуре и атмосферном давлении ведут себя как идеальные газы. Поэтому законы идеального газа во многих случаях могут применяться для расчета реальных газов.  [c.17]

Поскольку теплоемкость реального газа зависит от температуры, в термодинамике различают истинную и среднюю теплоемкости.  [c.17]

В технической термодинамике рассматриваются только такие процессы, в которых изменяются кинетическая и потенциальная составляющие внутренней энергии. При этом знания абсолютных значений внутренней энергии не требуется. Поэтому в понятие внутренней энергии будем в дальнейшем включать для идеальных газов кинетическую энергию движения молекул и энергию колебательных движений атомов в молекуле, а для реальных газов еще дополнительно и потенциальную составляющую энергии, связанную с наличием сил взаимодействия между молекулами и зависящую от расстояния между ними.  [c.54]

При расчете процессов истечения водяного пара ни в коем случае нельзя применять формулы для определения скорости (13-14) и секундного массового расхода (13-16), полученные применительно к идеальному газу. Расчет ведется исходя из общей формулы скорости истечения (13-6), полученной из уравнения первого закона термодинамики для потока и справедливой для любого реального вещества.  [c.213]

Анализ такого цикла с точки зрения теории тепловых процессов невозможен, а поэтому термодинамика исследует не реальные процессы двигателей внутреннего сгорания, а идеальные, обратимые циклы. В качестве рабочего тела принимают идеальный газ с постоянной теплоемкостью. Цилиндр заполнен постоянным количеством рабочего тела. Разность температур между источником теплоты и рабочим телом бесконечно малая. Подвод теплоты к рабочему телу осуществляется от внешних источников теплоты, а не за счет сжигания топлива. То же необходимо сказать и об отводе теплоты.  [c.262]


Свойствам идеальных систем, газов и растворов, е термодинамике отводится особая роль они используются для параметризации уравнений реальных систем, при которой эти уравнения приобретают тот же вид, что и уравнения идеальных систем, при замене в них некоторых из независимых переменных специально введенными функциями. Так, вместо (10.62) для У го составляющего реальной газовой смеси записывают  [c.101]

Третье начало, следовательно, предсказывает вырождение идеальных газов при низкой температуре. Как показало развитие квантовой статистики, такое вырождение действительно имеет место. Оно указывает на недостаточность классической механики и основанной на ней классической статистики в области низких температур. Квантовая статистика показывает, что третье начало термодинамики является макроскопическим проявлением квантовых свойств реальных систем при низких температурах.  [c.96]

Учебник состоит из 2-х частей. В первой части излагаются основные законы термодинамики, термодинамические процессы, реальные газы н пары, даются основные положения химической термодинамики. Во второй части главное внимание уделено явлениям теплообмена в авиационной и ракетной технике, процессам теплоотдачи при больших скоростях газа, вопросам теплообмена в вакууме и, др.  [c.2]

В первой части учебника излагаются основные законы термодинамики, термодинамические процессы, реальные газы и пары, рассматриваются циклы двигателей внутреннего сгорания, газотурбинных установок и реактивных двигателей даются основные положения химической термодинамики, необходимые для построения теории горения.  [c.3]

Во втором издании учебника в первой части более подробно рассмотрены вопросы трактовки первого и второго законов термодинамики, реальных газов значительно переработаны разделы химической термодинамики, дифференциальных уравнений термодинамики, паровых и парогазовых циклов включены разделы, посвященные эксергетическому методу исследования, термодинамике плазмы, термодинамике необратимых процессов.  [c.3]

Согласно (1.73) —(1.74) летучесть можно определить как давление, которое должна иметь реальная система, чтобы оказывать такое же действие, как и идеальная система. Поэтому летучесть можно назвать исправленным давлением . Введение летучести позволяет формальным путем сохранить простоту уравнений термодинамики идеальных газов. Трудности, связанные с учетом отклонения газов от идеального поведения, переносятся на вычисление летучести.  [c.21]

Теория термодинамических процессов в термодинамике в значительной степени идеализирована за счет введения таких понятий, как понятие обратимости процессов, представления рабочего тела как идеального газа, использования предпосылки о постоянстве численного значения показателя процесса как политропы с постоянным значением. Переход от идеализированных уравнений, получаемых при этих предпосылках, к реальным в этом случае осуществляется за счет введения в расчеты опытных коэффициентов, учитывающих отклонения идеализированных процессов от реальных.  [c.6]

Дифференциальные соотношения аналитически обобщают первый и второй законы термодинамики и достаточно широко используются при проведении теоретических и экспериментальных исследованиях свойств реальных газов. На основе имеющегося уравнения состояния реальных газов, дифференциальные уравнения термодинамики позволяют вычислять значения физических величин, входящих в это уравнение состояния. Наряду с этим дифференциальные уравнения позволяют оценить точность и термодинамическую ценность предлагаемых уравнений состояния реальных газов, что, несомненно, имеет большое практическое и прикладное значение. Одновременно практическое значение дифференциальных уравнений состоит и в том, что, устанавливая связь между физическими величинами, они позволяют сократить число получаемых из опыта данных о свойствах тел за счет возможности определения части из них расчетным путем.  [c.55]


Приведены основные законы и расчетные соотношения термодинамики применительно к реальным процессам природы, которые иллюстрируются примерами расчетов при решении задач энергетики в нефтяной и газовой промышленности. Изложены основные положения теории теплопередачи. Указаны области и особенности применения законов теплообмена в технологических процессах разработки и эксплуатации нефтяных и газовых месторождений, транспорта нефти и газа. Уделено внимание экономии топливных ресурсов страны, рациональному использованию установленного оборудования и охране окружающей среды.  [c.2]

В настоящее время развитие термодинамики идет в области изучения реальных тел (сжатых газов, жидкостей, твердого, тела), исследования дисперсных систем, химических процессов в сплавах и растворах, оптических явлений и космических процессов, развивается термодинамика биологических процессов и т. д.  [c.4]

Дифференциальные соотношения термодинамики аналитически обобщают первый и второй законы термодинамики и широко используются при проведении теоретических и экспериментальных исследований свойств реальных газов. Теория дифференциальных уравнений сама по себе не дает оснований для построения уравнения состояния вещества, однако, используя  [c.68]

Для идеальных газов энтальпия зависит только от температуры Н = Н(Т). Следовательно, при дросселировании идеальных газов температура не изменяется Г = 1(1ет. Для реальных газов, паров и жидкостей энтальпия зависит от температуры и давления. Изменение энтальпии определяется из дифференциальных соотношений термодинамики (см. 21)  [c.112]

Настоящий раздел посвящен изучению термодинамических свойств реального газа, которые может предсказать теория. Это удобно сделать на основе дифференциальных соотношений термодинамики с привлечением уравнения состояния, правильно учитывающего отклонения реального газа от идеального.  [c.52]

Теплоемкость данного идеального газа зависит от температуры, а реального и от давления (последняя зависимость слаба н ею обычно пренебрегают), поэтому в технической термодинамике различают истинную и среднюю теплоемкости.  [c.34]

Воспользуемся первым законом термодинамики для гро-стой термодинамической системы — реального газа  [c.36]

Известно, что свойства реальных газов в предельном состоянии (при очень низких давлениях) мало отличаются от свойств идеальных газов, поэтому как термические, так и калорические свойства реального газа могут быть описаны как свойства в идеальном газовом состоянии с поправкой, учитывающей отклонение реального газа от идеального. Эти поправки в настоящее время могут быть вычислены с высокой степенью точности с помощью дифференциальных уравнений термодинамики, полученных на основе первого и второго законов термодинамики.  [c.63]

Экспериментальные методы исследования термодинамических свойств реальных газов. Экспериментальные методы исследования термодинамических свойств реальных веществ сводятся к определению вириальных коэффициентов уравнения состояния и расчету термодинамических свойств исследуемого вещества с помощью полученного уравнения состояния и дифференциальных уравнений термодинамики.  [c.67]

Калориметрирование. Как было показано в 1.1, калорические свойства реальных газов, в том числе теплоемкость и энтальпия, могут быть рассчитаны с помощью дифференциальных уравнений термодинамики, если имеется уравнение состояния в вириальной форме, описывающее с достаточной точностью поведение реальных газов в широком диапазоне изменения термодинамических параметров. Однако даже в этом случае при вычислении теплоемкости необходимо выполнять операцию двойного дифференцирования экспериментальных данных, точность которой невелика, а поэтому вычисленные таким образом значения теплоемкости будут определены с большой погрешностью.  [c.69]

Так как теплоемкость идеального газа зависит от температуры, а реального и от давления, то в термодинамике различают истинную и среднюю теплоемкости. Истинной теплоемкостью называется отношение элементарного количества теплоты, сообщаемой термодинамической системе в каком-либо процессе, к бесконечно малой разности температур, т. е. с= 1) или dq= dt  [c.11]

Этот закон неприменим к отдельным молекулам или к малому числу их. Нельзя сказать, что в этом случае он неверен, так как он вообше ничего не говорит по поводу поведения отдельной молекулы или малого числа их, ничего не утверждает по той причине, что к отдельной молекуле неприменимо понятие теплоты, ибо понятие это, равно как понятия температуры и энтропии, имеет смысл только по отношению к весьма большому количеству молекул. Это вытекает из феноменологического метода, который положен в основу термодинамики. Феноменологический метод заключается в том, что рабочее тело рассматривают не как дискретное физическое тело, состоящее из отдельных молекул, а как некоторый континуум, т. е. как сплошную среду, физические параметры которой непрерывны и изменяются на бесконечно малую величину при переходе от одной точки пространства к другой. Это дает возможность изучать совокупность действия молекул, проявляющуюся в том, что нами названо параметрами состояния рабочего тела. Так, совокупность импульсов всех молекул газа дает параметр давления совокупность кинетических энергий молекул — внутреннюю энергию газа, совокупность объемов, занимаемых молекулами в их движении, — удельный объем газа. Статистический метод является лишь дополнением к феноменологическому методу и дает свои поправки в тех случаях, когда возможно судить о закономерности поведения отдельных молекул. Примером таких поправок является уравнение состояния реального газа.  [c.67]


В соответствии с первым законом термодинамики для реального газа или пара  [c.39]

К компрессорному процессу как реального, так и идеального газа применим первый закон термодинамики для потока (5.4), который в интегральной форме имеет вид  [c.222]

При выводе уравнения первого закона термодинамики (56) для потока газа использовались два наиболее общих закона природы закон сохранения энергии и второй закон Ньютона, поэтому уравнение (56) справедливо как для обратимых, так и для необратимых процессов, как для идеальных газов, так и для реальных газов и паров.  [c.235]

Можно показать, что рассматриваемые выше уравнения первого закона термодинамики справедливы как для идеальных газов и процессов, так и для реальных газов, протекание которых сопровождается потерями на трение и другими потерями.  [c.22]

Газов реальных термодинамика 161-173 Газов термодинамика 154-175 Газовый термометр 28 Гальванический элемент 263, 265 Гей-Люссак Ж. 27, 87, 107, 112 Гельмгольц Г. 48, 50, 82, 113, 131-134, 136, 14СЫ42, 146, 148, 153, 155, 156, 158, 163, 166, 175  [c.452]

В заключение следует отметить, что введение понятия энтропии было сделано пока применительно к идеальному газу, и все утверждения относительно свойств энтропии не могут пока быть обоснованно распространены и на реальные газы. Однако, как будет показано в главе VIII Второй закон термодинамики , понятие энтропии может быть установлено достаточно точно независимо от свойств рабочего тела. Пока же этот параметр будет использован как весьма удобный при анализе процессов идеального газа.  [c.85]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]

В XX в. наиболее актуальной задачей становится разработка теории течения и истечения паров и газов в связи с широким развитием паровых турбин. Исследуются термодинамические свойства паров, жидкостей, твердых тел. Появляются десятки уравнений состояния вещества, изучаются фазовые равновесия и фазовые превращения, ведется исследование электрических и магнитных процессов лучистой энергии, химических реакций, термодинамики реальных тел. Указанные области исследований термодинамики неразрывно связаны с именами Ван-дер-Ваальса, Дюгема, Г. Кирхгофа, М. Планка, Л. Больцмана, В. Гиббса, Н. С. Курнакова, М. П. Вукаловича, И. И. Новикова, Н. И. Белоконя, В. А. Кириллина и других ученых.  [c.4]

Дифференциальные уравнения термодинамики. Дифференциальные уравнения термодинамики позволяют выразить калорические свойства реальных веществ (i, и, Ср, v и т. д.) через термодинамические параметры и основные термодинамические характеристики вещества термическую расширяемость (dvjdT)p, термическую упругость (dpjdT) и изотермическую сжимаемость dpldv)r. Таким образом отпадает необходимость прямого экспериментального определения калорических свойств реальных газов, которое в ряде случаев связано со значительными погрешностями измерений.  [c.63]

Второй закон термодинамики является основой теории теплоэнергетических установок, холодильных установок, теплового насоса и термотрансформаторов. Он используется также для расчета термодинамических параметров реальных газов, паров и жидкостей. Всестороннее рассмотрение второго закона термодинамики в этом аспекте выходит за рамки настоящего учебника, поэтому в настоящей главе рассматриваются только те вопросы, связанные со вторым законом термодинамики, которые используются в последующих общеннженерных и специальных дисциплинах химико-технологических вузов.  [c.89]

В технической термодинамике рассматриваются главным образом системы (тела), с помощью которых происходит взаимное преобразование теплоты и работы (процессы в тепловых машинах), т. е. рабочие тела. В качестве рабочих тел, как правило, используют газы и пары, способные значительно изменять свой объем при изменении внешних условий. Принципиального различия между газом и паром нет газ можно рассматривать как пар ссогветствующсй жидкости, находящийся далеко от состояния сжижения (сильно г е-регретый пар), а пар — как реальный газ, близкий к состоянию сжижения.  [c.9]

В тепловых двигателях в качестве рабочего тела примедявдт реально существующие газы, но для упрощерия в технической термодинамике ш1 око применяют понятие об идеальном газе.  [c.15]


Смотреть страницы где упоминается термин Газов реальных термодинамика : [c.11]    [c.19]    [c.212]    [c.69]    [c.33]    [c.70]    [c.2]    [c.147]    [c.437]   
Современная термодинамика (2002) -- [ c.161 , c.162 , c.163 , c.164 , c.165 , c.166 , c.167 , c.168 , c.169 , c.170 , c.171 , c.172 ]



ПОИСК



Газов термодинамика

Приложение основных законов термодинамики к реальным газам Реальные газы

Разделтретий ПРИМЕНЕНИЕ ОСНОВНЫХ ЗАКОНОВ ТЕРМОДИНАМИКИ К РЕАЛЬНЫМ РАБОЧИМ ТЕЛАМ Реальные газы

Реальные газы

Реальный газ

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА ИДЕАЛЬНЫЙ И РЕАЛЬНЫЙ ГАЗЫ. ГАЗОВЫЕ ЗАКОНЫ

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Рабочее тело и его основные параметры Рабочее тело идеальный и реальный газы

Термодинамика



© 2025 Mash-xxl.info Реклама на сайте