Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Световой луч показатель преломления

Полное внутреннее отражение. В предыдущем параграфе мы получили закон преломления света, согласно которому отношение синуса угла падения к синусу угла преломления равно показателю преломления второй среды относительно первой. Из этого закона следует, что при прохождении световой волны из оптически менее плотной среды в более плотную преломленный луч приближается к нормали. И обратно, когда свет распространяется из оптически более плотной среды в менее плотную, преломленный луч удаляется  [c.53]


Осталось решить задачу о зависимости скорости распространения световой волны в -анизотропной среде, а следовательно, и показателя преломления анизотропной среды от ее конкретных свойств, определяемых главными значениями диэлектрической проницаемости Ву, Sy и е,.. С этой целью составим уравнение, определяющее фазовую скорость (или аналогичным путем скорость по лучу) распространения световой волны в анизотропной среде в зависимости от направления N.  [c.251]

Аналогично решается задача об искривлении лучей заходящего Солнца в верхних слоях атмосферы. В данном случае показатель преломления при увеличении высоты убывает, лучи изогнуты (рис. 6.17) и заходящее Солнце будет казаться выше, чем оно действительно находится. Более того, может создаться ситуация, когда находящийся на земле наблюдатель видит Солнце, уже скрывшееся за горизонтом. При истолковании этих явлений, физическая сущность которых совершенно ясна, следует также учитывать психологический эффект, заключающийся в том, что мы настолько привыкли исходить из основного свойства распространения световых лучей в однородной среде — их прямолинейности, что невольно пытаемся перенести его на более сложные случаи, когда лучи искривлены.  [c.274]

Величины / U f называют передним и задним фокусными расстояниями. Как видно, они полностью определяются значениями показателей преломления п и п и кривизной поверхности, на которой происходит преломление световых лучей. Соответствующие точки F к будут передним и задним фокусами этой по верхности. Очевидно, что / // = —п/п.  [c.279]

Известно, что траектория светового луча искривляется, если показатель преломления среды меняется в направле-  [c.121]

В последние годы наблюдается бурное развитие волоконно-оп-тических линий связи (ВОЛС), важнейшим элементом которых являются волоконно-оптические кабели (ВОК). Узкий световой лазерный луч. модулированный соответствующим образом, может распространяться на большие расстояния и передавать огромный объем информации. Использование его для передачи в атмосфере затруднено из-за больших потерь световой энергии, из-за поглощения и рассеяния, обусловленных загрязнением передающей среды (частички пыли, сажи, газы, капли влаги). По мере развития производства оптически чистых стекол и стеклянных нитей на их основе появилась возможность передавать световую энергию по ВОК, основным элементом которых является ОВ (оптическое волокно). В качестве материала для ОВ используются стекла на основе чистого кварца. Луч света, введенный от лазера в ОВ, распространяется вдоль его оси, если показатель преломления в центре волокна больше, чем у его внешней поверхности. Это достигается, например, путем изготовления двухслойного ОВ, центральная часть которого (сердечник) за счет легирующих добавок имеет показатель преломления, немного больший наружного слоя ОВ (светоотражающая оболочка).  [c.265]


Пусть М) и М ) — две однородные среды с абсолютными показателями преломления п и щ, разделенные поверхностью 5. Если световой луч переходит из первой среды во вторую, то первый закон сохраняется и  [c.193]

С аналитической точки зрения эта задача, очевидно, тождественна с задачей об определении, по принципу Ферма, хода световых лучей в оптической среде с заданным показателем преломления l/u (п. 18) как мы уже имели случай указать (только что упомянутый пункт), кривая с, разрешающая задачу, принадлежит к связке траекторий, удовлетворяющей условию = О и соответствующей свободному движению в силовом поле с единичным потенциалом  [c.455]

Таким образом, задача динамики об определении траектории движения частицы совпадает с задачей оптики об отыскании формы светового луча, если силовое поле и постоянная энергии в первой из них связаны с показателем преломления во второй соотношением  [c.548]

Определенный комплекс оптических свойств — показателя преломления и дисперсии световых лучей  [c.440]

Среди различных способов отклонения лазерного луча ведущее место принадлежит электрооптическому методу, позволяющему получать большие скорости отклонения и высокую разрешающую способность. Суть электрооптического метода отклонения лазерного луча состоит в следующем приложенное к кристаллу электрическое поле вызывает изменение показателя преломления в направлении, перпендикулярном направлению распространения пучка света, проходящего через кристалл, что вызывает искривление траектории светового пучка. Угол отклонения может быть вычислен по формуле  [c.85]

Понятие Г, л. используется в физ. теориях. Так, движение консервативной механич. системы с конечным числом степеней свободы описывается Г. л. в нек-ром специально подобранном римановом пространстве. Аналогичным образом можно описать распространение световых лучей в среде с показателем преломления, зависящим от координат.  [c.436]

Показатель преломления равен отношению синуса угла падающего светового луча к синусу угла луча преломленного он меняется в зависимости от температуры и природы света. Обычно показатель преломления измеряют при 25° С и длине световой волны, соответствующей натриевой D-линии. Показатель преломления легко измерить при помощи серийных приборов типа Аббе или каких-либо других аналогичных типов.  [c.147]

Интерференционный метод. Этот метод основан на зависимости между показателем преломления и плотностью среды. Определение поля плотностей в данном случае сводится к измерению разности хода световых лучей, так как чем больше коэффициент преломления среды, тем медленнее распространяется в ней свет. В интерферометре коэффициент преломления измеряют, сравнивая время подхода к экрану определенной фазы световой волны с временем подхода соответствующей фазы другой световой волны, не проходящей через изучаемое поле потока [63, 64, 66, 74]. Неравномерное распределение плотности в исследуемой неоднородности вызывает смещение интерферометрических полос, по величине которого можно определить характеристики изучаемого процесса.  [c.276]

Теневые методы (или шлирен-методы) основаны на отклонении луча света при прохождении оптически неоднородной среды в сторону большей плотности. В общем случае радиус кривизны светового луча R связан с градиентом показателя преломления п соотношением  [c.387]

Рис. 6.15. Путь светового луча в плоском потоке с переменным по оси у показателем преломления п Рис. 6.15. Путь <a href="/info/562476">светового луча</a> в <a href="/info/146239">плоском потоке</a> с переменным по оси у показателем преломления п

В качестве основного объекта исследования разумно и по сей день выбирать упомянутый выше исландский шпат, хотя почти все кристаллы в той или иной степени обладают этим свойством. Опыт показывает, что при освещении кристалла исландского шпата узким пучком света в нем возникают два луча, которые со времен Гюйгенса называют обыкновенным и необыкновенным (рис.3.1). Этот эффект наблюдается и при нормальном падении света на естественную грань кристалла. Для необыкновенного луча показатель преломления rig зависит от направления луча а кристалле, тогда как Пд — показатель преломления обыкновенного луча — остается постоянным при любом угле падения световой волны на кристалл. В частности, для исландского шпата (для света с длиной волны X = 5893А — желтый дуб.иет натрия) Лц = 1,658, а 1,486 < < 1,658. Следовательно, в данном случае Пе < По- Такие кристаллы называют отрицательными. Вместе с тем существует широкий класс веществ (например, кристаллический кварц), для которых > л,,. Такие кристаллы называют положительными.  [c.114]

Это обстоятельство и ряд других отступлений от обычных законов преломления дали повод назвать первый пучок, ыкновемным .о), а второй — необыкновенным (е) лучом. Для этих лучей показатели преломления различны. Для обыкновенного луча показатель преломления По остается постоянным при любом угле падения световой волны на кристалл, а показатель преломления необыкновенного луча щ зависит от его направления.  [c.31]

При освещении кристалла узким пучком лучей в нем возникают два луча, соответствующие двум электромагнитным волнам, распространяющимся в кристалле с различными скоростями и вследствие чего лучи имеют различные показатели преломления (ло = ivi и Пе = /uj) и распространяются внутри кристалла в различных направлениях. Для одного из лучей показатель преломления о не зависит от направления луча в кристалле и таким образом остается постоянным при любом угле падения световой волны на кристалл этот так называемый обыкновенный луч полностью подчиняется обычным законам преломления. Другой луч — необыкновенный он не следует обычным законам преломления и, кроме частных случаев, не остается в плоскости падения. Скорость распространения этого луча в зависимости от направления распространения в кристалле может принимать различные значения в определенном интервале, соответственно с этим и показатель преломления его зависит от направления. В одноосном кристалле имеется только одно направление оптической оси, в котором оба луча имеют одну и ту же скорость распространения. Во всех других направлениях скорости распространения для обыкновенного и необыкновенного лучей различны.  [c.71]

Точно как же, как световые лучи преломляются, когда переходят из среды с одним показателем преломления в среду, обладающую другим показателем преломл ения, электрон меняет направление своей траектории под действием электрического или магниглого поля. Эти поля иг зают роль линз, преломляющих ход световых лучей. Законы преломления электронов вытекают из принципа Ферма точно так же, как законы преломления лучей, и поэтому общие законы образования изображений в оптических с1 стемах применяются без изменений в электронно-оптических системах не только совпадают законы параксиальной < оптики, согласно которым изображение точки есть точка, изображение прямой — прямая и т. д., но электронные линзы вызывают такие же аберрации как оптические, и эти аберрации (в гораздо большей степени, чем в оптических системах) ограничивают разрешающую силу электрооптических сист ем.  [c.91]

Мираж. Летом температура воздуха над гюверхностью моря ниже, чем в более удаленных от его поверхности точках другими словами,-температура воздуха по ме[>е удаления от поверхности моря увеличивается. Нагревание воздуха приводит к его расширению, а расширение, в свою очередь, — к уменьшению показателя преломления. Так как свет в теплых слоях проходит быстрее, чем в холодных, то в результате этого ои распространяется по кривой траекторш с наименьшим временем. Вот почему путь светового луча от некоторого плавающего летом в море предмета, например, лодки, искривляется п поэтому лодку мы видим как бы висящей  [c.170]

Из полученного значения < п> > пп сразу следует возможность самофокусировки лазерного излучения, предсказанной Г. Г. Аска-рьяном в 1962 г. и вскоре обнаруженной в эксперименте. Действительно, равенство (4.52) показывает, что если через какую-либо среду (твердое тело или жидкость с определенными свойствами ) проходит интенсивный пучок света, то он делает эту среду неоднородной — в ней как бы образуется некий канал, в котором показатель преломления больше, чем в других ее частях. Тогда для лучей, распространяющихся в этом канале под углом, большим предельного, наступает полное внутреннее отражение от оптически менее плотной среды ( см. 2.4) и наблюдается своеобразная фокусировка излучения. Наиболее интересен случай, когда подбором входной диафрагмы для данного вещества удается установить такой диаметр канала 2а, что дифракционное уширение >L/(2a) (см. 6.2) компенсирует указанный эффект и в среде образуется своеобразный оптический волновод, по которому свет распространяется без расходимости. Такой режим называют самоканализацией (самозахватом) светового пучка (рис. 4.21). Весьма эффектны такие опыты при использовании мощных импульсных лазеров, излучение которых образует в стекле тонкие светящиеся нити. Однако в газообразных средах самофокусировка не имеет места, что существенно ограничивает возможность использования этого интересного явления.  [c.169]


Если 0диф>0о, часть дифрагированных лучей выходит из цилиндрического пучка света, т. е. пучок расширяется. При 0диф<0о все дифрагированные лучи испытывают полное отражение от боковой поверхности цилиндрического пучка. Так как в реальных условиях ограниченный по фронту световой пучок всегда имеет большую интенсивность на оси, то показатель преломления согласно (36.20) также будет иметь большую величину на оси пучка и убывать к его периферии. Вследствие этого лучи в пучке будут искривляться, пучок начнет сжиматься и может превратиться в узкий световой канал, т. е. произойдет самофокусировка пучка (рис. 36.5, б). Далее световой пучок распространяется внутри этого канала, обеспечивая сам себе своеобразный оптический волновод. Такой режим распространения светового пучка называется самоканализацией. В этом случае 0диф 0о, т. е. дифракционные явления полностью подавляются.  [c.310]

Рассмотрим задачу о прохождении луча света через некоторую область 1 (рис. 11.1), показатель преломления которой в направлении координатных осей х и у отличается от показателя преломления окружающей среды. Очевидно, в соответствии с законом преломления Снеллиуса луч света после прохождения области / должен отклоняться от первоначального направления. Поведение луча после прохождения через неоднородность фиксируется в плоскости экрана 2 тремя измеряемыми параметрами смещением б между точками А и А углом отклонения е луча от первоначального направления временем запаздывания т прихода луча в точку А (по более длинному оптическому пути) по отношению к времени прихода луча в точку А. Па регистрации трех указанных параметров световой волны основываются три основных метода оптической визуализации неоднородностей плотности в газодинамическом потоке. Эти методы называют соответственно прямотене-  [c.216]

В виде частного приложения мы можем представить себе световые лучи в оптически изотропной, но неоднородной среде с коэффициентом преломления п(х,у,г), меняющимся от точки к точке. Как мы уже видели в п. 18, световые лучи тождественны с геодезическими линиями метрического многообразия, имеющего линейным элементом ds = nds, где ds есть обыкновенный линейный элемент физического (евклидова) пространства. Так как элемент ds отличается только позиционным множителем п от евклидова элемента ds, то обобщенные количества движения р траекторий будут также отличаться только на локальный множитель от направляющих косинусов соответствующей касательной, так что введенное выше условие ортогональности (58) приобретает в этом случае обычный смысл, который оно имеет в элементарной метрике. С другой стороны, как было отмечено в п. 18, п ds есть не что иное, как элемент времени dt, которое требуется свету, чтобы пройти элемент пути ds следовательно, действие сводится к времени распространения света. Таким образом, мы на основании теоремы Бедьтрами — Липшица заключаем, что световые лучи, которые в заданный момент выходят из заданной поверхности oq в направлении, ортогональном к Oq, или, в частности, из единственного центра, остаются всегда ортогональными к поверхности /= onst, каков бы ни был показатель преломления п, т. е. какова бы ни была неоднородность среды. Эти поверхности, представляющие собой геометрические места точек, к которым свет приходит за один и тот же промежуток времени, образуют так называемые волновые поверхности (см. гл. X, упражнение 13).  [c.451]

Важный предельный случай предыдущего предложения мы будем иметь, рассматривая среду, в которой показатель изменяется внезапно при переходе через некоторую поверхность о, оставаясь приблизительно постоянным (но с разными значениями) с одной и с другой стороны. Выполнив в обратном порядке рассуждения п. 18 и перейдя к пределу, мы будем иметь случай лучей с прямолинейным ходом с обеих сторон от поверхности а, которые испытывают преломление при пересечении с этой поверхностью. Установленное выше предложение приводит к известной теореме Малюса—Дюпена-, если пучок световых лучей, выходящих из некоторого центра или, вообще, нормальных к заданной поверхности, подвергается какому угодно числу преломлений, то пучок лучей, выходящих из последней поверхности, будет попрежнему состоять из нормалей к некот рому семейству поверхностей.  [c.451]

Понятие лучей сохраняется и в еолковой оптике, в к-рой световые лучи Г. о. трактуются как нормали к волновой поверхности — геом. месту точек, в к-рых световые эл.-магн, колебания имеют одинаковую фазу. Согласно теореме Малюса — Дюпена, пучку лучей, вышедшему из к.-л. точки, после произвольного числа преломлений и отражений в последней среде соответствует множество ортогональных этому пучку поверхностей, являющихся волновыми поверхностями, т. е. свойство ортогональности не теряется при преломлении и отражении. Произведение показателя преломления однородной среды п на расстояние между двумя волновыми  [c.438]

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ — раздвоение светового луча при прохождении через анизотропную среду, обусловленное зависимостью показателя преломления (а следовательно, и скорости волны) от её поляризации и ориентации волнового вектора относительно кристаллография, осей, т. е. от направления распространения (см. Крист-аллооптика, Оптическая анизотропия). При падении световой волны на поверхность анизотропной среды в последней возникают две преломлённые волны, имеющие разную поляризацию и идущие в разных направлениях с разл. скоростями. Отношение амплитуд этих волн зависит от поляриза-  [c.559]

Др. примером самовоздействия являются эффекты типа самофокусировки и самодефокусировки излучения, обусловленные деформацией фазового фронта распространяющейся волны. Напр., в среде с показателем преломления га, зависящим от интенсивности световой волны га — Пд п Е (безынерц. нелинейность), положительная О. с. формируется за счёт отклонения лучей в область большого показателя преломления, что в свою очередь приводит к росту показателя преломления за счёт роста интенсивности света, фокусируемого такой нелинейной линзой. Если коэф. передачи но каналу такой положительной О. с. превышает коэф. передачи по каналу отрицательной О. с., связанной с дифракцией света, то наблюдается эффект самосжатия, схлопывания лазерного пучка при его распространении через нелинейную среду.  [c.387]

ОПТИКА НЕОДНОРОДНЫХ СРЕД — раздел физ. оптики, в к-ром изучаются явления, сопровождающие распространение оптического излучения в оптически неоднородных средах, показатель преломления п к-рых не постоянен, а зависит от координат. Характер явлений и методы их исследования существенно зависят от характера изменения п и масштабд неоднородностей по сравнению с длиной волны света К. Оптич, неоднородностями являются поверхности или объёмы внутри среды, на (в) к-рых изменяется и. Независимо от физ. природы неоднородности она всегда отклоняет свет от его пер-вонач. направления. На поверхностях, разделяющих среды с различными н, происходят отражение света и преломление света. В среде с непрерывно изменяющимся п, когда относит, изменение п на расстояниях, сравнимых с очень мало (т. н. градиентная среда), световой луч, задаваемый величиной grad5 =п(1г1(13 в каждой точке волновой поверхности 8 х, у, г), меняет направление в зависимости от неоднородностей пространства, что приводит к его искривлению (рефракции).  [c.424]

Если показатель преломления изменяется непрерывно (напр., в атмосфере с высотой), то при распространении светового луча в такой среде также происходит непрерывное изменение ваправлевня распространения — Луч искривляется в сторону большего значения показателя преломления (см. Рефракция света в атмосфере), во при этом отражевад света не происходит.  [c.106]


В однородных средах радиоволны распространяются прямолинейно, подобно световым лучам. Процесс Р. р. в этом случае подчиняется законам геометрической оптики. Однако реальные среды неоднородны. В них п, а следовательно, и Цф различны в разных участках среды, что приводит к рефракции радиоволн. В случае плавных (в масштабе А) неоднородностей справедливо приближение геом. оптики. Если показатель преломления зависит только от высоты Л, отсчитываемой от сферической поверхности Земли, то вдоль траектории луча выполняется условие  [c.255]

Под действием светового пучка, имеющего, напр., гауссову форму, нелинейная среда становится оптически неоднородной в центре пучка, где больше интенсивность, показатель преломления больше, чем для краёв пучка, а следовательно, фазовая скорость в центре будет меньше, чем по краям пучка. Это приведет к иска-жецню первоначально плоского волнового фронта, а лучи, распространяющиеся по нормали к фронту, искривляются (нелв-гейная рефракция) к оси (рис. 1, . Первоначально однородная среда становится своеобразной  [c.415]

Главным сечением, называется плоскость, проходящая через оптическую ось. Обычно рассматривают главное сечение, проходящее через световой луч. Луч, поляризованный в плоскости главного сечения, называется обык-новенны.и. Он подчиняется законам преломления геометрической оптики. Луч, поляризованный в плоскости, перпендикулярной главному сечению, называется необыкновенным его показатель преломления зависит от угла падения плоскости, построенные на нормали к поверхности в точке падения и падающем и преломленном лучах, могут не совпадать.  [c.223]


Смотреть страницы где упоминается термин Световой луч показатель преломления : [c.100]    [c.330]    [c.878]    [c.166]    [c.107]    [c.419]    [c.420]    [c.548]    [c.119]    [c.276]    [c.151]    [c.153]    [c.441]    [c.482]    [c.146]    [c.59]    [c.388]   
Теория оптических систем (1992) -- [ c.12 ]



ПОИСК



Геометрическая Уравнение эйконала. Луч света. Область применимости лучевого приОПТИКа ближения. Принцип Ферма. Вывод закона преломления из принципа Ферма. Распространение луча в среде с переменным показателем преломления Линзы, зеркала и оптические системы

Действие сильного светового поля. Зависимость показателя преломления от интенсивности света

Зависимость показателя преломления от интенсивности света

Контакт показателей преломления световых вол

ПОКАЗАТЕЛИ ПРЕЛОМЛЕНИЯ СВЕТА - ПРОВОДНИКИ

Показатели преломления света

Показатели преломления света

Показатель преломления

Преломление

Преломление света

Прошедший свет показатель преломления и ослабление

Свет Показатели преломления

Свет Показатели преломления

Экспериментальное наблюдение индуцированного светом изменения показателя преломления



© 2025 Mash-xxl.info Реклама на сайте