Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задержки излучения

Следует помнить, что для того, чтобы этот эффект можно было наблюдать как задержку излучения, принимающий экран должен быть большим в смысле (1.76). Это, в частности, означает, что на нем должно умещаться большое число дифракционных максимумов.  [c.30]

Задержки излучения в ДГС-лазерах полосковой геометрии 260  [c.359]

Временная зависимость выходного излучения рубинового лазера, работающего в режиме свободной генерации, обычно представляет собой хаотические пульсации (пички), которые не воспроизводятся от одного импульса лазера к другому. Генерация начинается не сразу после включения лампы-вспышки, а с некоторой задержкой. Это связано с тем, что для возникновения генерации необходимо выполнить условие самовозбуждения, т. е. создать достаточную инверсную населенность (пороговую населенность) в системе рабочих уровней. Энергия лампы-вспышки от момента ее включения до момента начала генерации расходуется именно на создание такой пороговой населенности. Типичные осциллограммы излучения рубинового лазера, работающего в режиме свободной генерации, приведены на рис. 35.13.  [c.287]


В случае прохождения колебаний через границу задержка—изделие прямом (излучение) и обратном (прием)  [c.217]

В момент излучения зондирующего импульса генератор Г через линию задержки импульсов ВЗ, регулируемого ручкой 3, запускает генератор строб-импульса ГС. Строб-импульс подают на один из входов каскада  [c.252]

Полное изображение типа С образуется при перемещении преобразователя в направлении, перпендикулярном к направлению электронного сканирования. При этом сигналы коорди-, нат строки вырабатываются датчиками координат, как в системе с ручным (механическим) сканированием. Более простое решение этой задачи может быть получено с применением двумерного электронного сканирования. Пьезоэлементы двумерной матрицы (например, с числом элементов 8X8) возбуждаются с задержками, обеспечивающими сложение амплитуд акустических импульсов лишь на определенных направлениях в объекте контроля. Аналогично в тракте приема принятые пьезоэлементами сигналы предварительно задерживаются так, что суммирование амплитуд соответствует направлению излучения.  [c.271]

Коэффициент корреляции вибрационного поля машины является функцией не только задержки времени т, но и пространственных координат. В приведенной задаче в качестве пространственной координаты фигурирует номер амортизатора. В общем случае, например, при расчете излучения звука корпусом машины, коэффициенты взаимной корреляции непрерывно зависят от пространственных координат, а в расчетных формулах, подобных (3.13), вместо сумм стоят интегралы.  [c.86]

Очевидно, что описанная выше технология облучения абсолютно неприемлема для уничтожения микробов — возбудителей болезни или опухолей в организме больного человека. Облучение всего его организма необходимым уровнем радиации убило бы его гораздо быстрее, чем любая болезнь Тем не менее радиоизотопы могут безопасно и эффективно использоваться для уничтожения или задержки роста локальных опухолей в человеческом организме, если выбор местоположения источника облучения и время этой процедуры таковы, что облучение практически никакого вреда не наносит здоровым тканям. Радиотерапия (так называется этот метод лечения) невольно ассоциируется в сознании большинства людей с лечением рака. Однако она также широко применяется в наши дни при лечении различных кожных заболеваний, таких, как стригущий лишай и бородавки. Для лечения пораженных участков, находящихся на поверхности тела, не следует применять гамма- или рентгеновское излучение, обладающее интенсивной проникающей радиацией. В этих случаях наиболее подходящими будут радиоизотопы, излучающие альфа- и бета-частицы. Для этой цели широко используются стронций-90 и фосфор-32. Если опухоль локализована, радиоактивный источник можно поместить в непосредственной близости от пораженного места. Однако некоторые глубоко сидящие опухоли лучше всего подвергать облучению проникающей радиацией, направленной в человеческий организм из внешнего источника. Таким источником может служить высоковольтная машина, излучающая рентгеновское излучение, или радиоизотопы цезий-137 и кобальт-60, испускающие гамма-излучение.  [c.121]


В большинстве случаев М. п. работают при наличии постоянной составляющей магн. поля Нд (магн. индукции Вд) с целью линеаризации эффекта магнитострик-ции при этом колебания сердечника в режиме излучения происходят с частотой возбуждающего поля, а в режиме приёма эдс в обмотке имеет частоту внеш. звукового давления. Пост, подмагничивание создаётся либо протекающим по обмотке пост, током, либо с помощью пост, магнитов, либо за счёт остаточной намагниченности. В излучателях звука величину //д выбирают так, чтобы получить макс, эффект преобразования энергии или достичь предельной излучаемой мощности (в последнем случае Вд ч В /2, где — индукция насыщения). В приёмниках достаточной бывает остаточная намагниченность, при к-рой чувствительность ближе к макс, значению. В устройствах акустоэлектроники — фильтрах, стабилизаторах, линиях задержки — пост, поле используют иногда и для управления их характеристиками — коэф. передачи, величиной потерь, ра-  [c.9]

Простейший вариант оптич. эхо-спектроскопии (спектроскопии на основе светового эха) реализуется при наблюдении зависимости амплитуды сигнала светового ха от времени задержки зл.-магн, излучения, резонансно взаимодействующего с ансамблем частиц среды. Сигнал светового эха появляется после 2-го импульса через время, равное задержке 2-го импульса относительно 1-го. Оптич. эхо есть, по существу, повторное возникновение эффекта затухания свободной поляризации, к-рое сопровождает 1 й импульс. 2-й импульс нужен для того, чтобы восстановить одинаковую фазу возбуждённых 1-м импульсом атомных диполей, потерянную к моменту прихода 2-го импульса вследствие процессов релаксации. Для регистрации оптич. эха площадь 1-го импульса (интеграл от амплитуды напряжённости оптич. поля по всей длительности импульса, умноженный на дипольный момент перехода должна быть равна я/2, второго — я. Спектроскопия светового эха — один из наиб, мощных инструментов изучения столкновительных релаксац. процессов в газах. Время затухания сигнала светового эха равно эфф. времени жизни возбуждённого уровня, определяемого атомными (молекулярными) столкновениями ц спонтанным излучением. Методами спектроскопии светового эха измеряют также сверхтонкую структуру возбуждённых состояний.  [c.308]

С помощью методов Н. с. смешения может быть достигнуто очень высокое временное разрешение. Для этого излучение накачки направляют в среду в виде коротких импульсов, синхронизованных с изучаемыми процессами с точностью, не меньшей, чем длительность используемых оптич. импульсов, и вводится переменная, строго контролируемая временная задержка между началом изучаемого процесса и моментом зондирования. В таком случае временное разрешение схемы регистрации определяется длительностью лазерных импульсов, к-рые могут выбираться в пико- и даже в фемтосекундном диапазоне (см. Фемтосекундная  [c.308]

Локация объекта. Оси. задачей О. л., так же как радиолокации, является определение дальности до объекта, к-рое производится путём измерения задержки во времени прихода отражённого сигнала относительно излучающего дальность R вычисляется по ф-ле R = I/2. Погрешность измерения R обусловлена ошибками в измерении временного интервала между зондирующим и отражённым импульсами, непостоянством показателя преломления и турбулентностью атмосферы, а также изменением условий отражения излучения от объекта. Разброс величины временного интервала носит статистич. характер из-за наличия случай-  [c.433]

ПЛЕНЕНИЕ ИЗЛУЧЕНИЯ — задержка выхода фотонов из оптически толстой системы, обусловленная многократностью актов их поглощения и последующего переизлучения атомами среды.  [c.635]

Бели эти изменения велики, так что к моменту забывается состояние, сформированное в момент т. е. рассеянный фотон статистически не связан с падающим, то такое Р. с. наз. некогерентным. Большие возмущения в промежуточных состояниях могут обусловить разного рода вторичные свечения, напр. фотолюминесценцию., к-рую традиционно не считают Р. с. Феноменологич. особенности этого свечения — инерционность, задержка или затягивание свечения (рассеяния), независимость спектра люминесценции от быстрых изменений характеристик падающего излучения.  [c.277]

При регистрации частиц (или квантов) задача Я. э. сводится к счёту импульсов от детектора при идентификации типа излучения и исследовании его спектра анализируется форма импульса, амплитуда или относительная задержка между импульсами. В случае исследования пространств, распределения излучении регистрируются номера сработавших детекторов или непосредственно определяется координата точки детектирования (см. Координатные детекторы).  [c.661]


Между функцией Jp излучения (12.1) и полным двухфотонным коррелятором существует очень простая связь. Населенность возбужденного синглетного уровня связана с вероятностью pi обнаружить молекулу в синглетном возбужденном состоянии соотношением rii = pin, где п — полное число примесных молекул. Полный двухфотонный коррелятор описывается формулой р = Pi /Ti. Как мы знаем, он зависит от времени задержки одного фотона относительно другого. Если это время превышает время релаксации в системе, то коррелятор р будет зависеть от частоты возбуждающего света и не будет зависеть от времени. Функция излучения Jp пропорциональна свертке такого полного двухфотонного коррелятора р с функцией формы полосы флуоресценции. Эта связь может быть записана в простой математической форме  [c.164]

Геометрическое свойство гиперболы состоит в том, что разность расстояний от любой точки гиперболы до ее фокусов есть величина постоянная. Наземные станции являются фокусами гиперболы. Одну и ту же временную разность имеют две гиперболы, расположенЕЕые симметрично относительно средней точки базовой линии. Это создает неопределенность в нахождении нужной линии положения. Чтобы устранить ее, импульсы посылается станциями неодновременно. Ведущая станция работает самостоятельно, посылая импульсы во все стороны. Ведомая станция излучает импульсы с определенной задержкой, которая строго согласована по времени с излучением импульсов ведущей станцией. Задержка излучения импульса на ведомой станции обеспечивает во всей рабочей области системы наличие только одной гиперболы, соответствующей полученной разности времени между моментами прихода сигналов. Это дает возможность однозначно определять на приемоиндикаторе линию положения самолета. Если использовать другую пару станций, то можно определить и вторую линию положения, а в пересечении их найти место самолета.  [c.80]

Соотношение (8.53) позволяет определить постоянную Планка из измерения наклона прямых, выражающих зависимость потенциала задержки от час готы падающего на фотокатод излучения. Весьма точное определение h таким методом было выполнено П. И. Лукирским и С. С. Прилежаевым в 1930 г. Для измерений использовали сферический конденсатор, внутренний шарик которого был изготовлен из никеля и освещгится светом ртутной лампы. Спектральные линии ртути, возбуждавшие фотоэффект, выделялись монохроматором с кварцевой призмой. В этих опытах наблюдался относительно крутой спад кривых, характеризующих зависимость силы фототока от приложенного  [c.434]

Однако в применениях, требующих последовательных лазерных импульсов с малой задержкой (порядка 1 мкс) в ряде случаев наблюдается значительное ухудшение условий транспортиров1СИ лазерного излучения во втором и последующих импульсах.  [c.154]

Ультразвуковые дефектоскопы предназначены для излучения ультразвуковых колебаний, приема эхо-сигналов, установления положения и размеров дефектов. Простейшая структурная схема эходефектоскопа изображена на рис. 6.22, о. Здесьгенератор I возбуждает короткие электрические импульсы и подает их на излучатель 2, который работает как пьезопреобразователь и преобразует данные импульсы в ультразвуковые колебания (УЗК). УЗК распространяются в объект контроля (ОК) 3, отражаются от дефекта и противоположной стороны ОК, принимаются приемником 4 (излучатель и приемник может быть одним и тем же элементом при совмещегшой схеме пьезопреобразователя). Приемник 4 превращает УЗК в электрические сигналы и подает их на усилитель 5, а затем на вертикально отклоняющие пластины электронно-лучевой трубки, на которой формируются пики импульсов I, II, III (верхняя часть рисунка), характеризующие амплитуду эхо-сигналов. Одновременно с запуском генератора импульсов 1 (или с некоторой заданной задержкой во времени) начинает работать генератор развертки 7. Правильную временную последовательность их включения и работы (а также правильную последовательность работы других узлов дефектоскопа, не показанных на рисунке) обеспечивает синхронизатор 6. Синхронизатор приводит в действие генератор развертки 7. Сигнал, поступающий на генератор развертки 7, направляется на гори-зонтально-отклоняющие пластины электронно-лучевой трубки. При этом на электронно-лучевой трубке появляется горизонтальная линия (линия развертки дефектоскопа), расстояние между пиками пропорционально пути импульса от излучателя до отражателя и обратно. Таким образом, развертка позволяет различать по времени прихода сигналы от различных отражателей ультразвука (от дефекта II, донный III) и их отклонение от зондирующего I.  [c.178]

Рассмотрим структурную схему ЛДИС, показанную на рис. 11.12. Источником излучения является лазер 1, как правило, непрерывного действия. Излучение лазера в расщепителе пучка 2 делится на два луча, один из которых при помощи объектива 3 направляется на исследуемый объект 4, например на поток жидкости с рассеивающими частицами. Рассеянный свет собирается приемным объективом 5, проходит узел совмещения пучка 6 и направляется в блок выделения сдвига ДСЧ. Туда же направляется и второй луч, который (для выравнивания оптического пути) проходит линию задержки 7. В блоке 8 происходит сравнение частоты рассеянного света (Орас с,частотой зондирующего луча лазера. Выделенный сигнал, содержащий информацию о параметрах исследуемого потока, обрабатывается в блоке 9.  [c.230]

Если задержка детектирования фотонов больше времени задержки в излучении фотонов пары (в pa Mai-риваемом случае около 5 не), то в схеме совпадения детектируются фотоны, испускаемые разными атомами. Эти совпадения чисто случайны и дают постоянный фон совпадений, не зависящий от задержки (рис. 154). При уменьшении задержки и приближении ее к значению времени жизни промежуточного состояния каскадного перехода начинают детектироваться пары фотонов, испускаемых одним атомом, и число детектируемых в единицу времени пар фотонов резко возрастает (рис. 154). В качестве истинного значения, характеризующего счет пар фотонов на совпадение, принимается его значение в максимуме за вычетом фона.  [c.424]


Таким образом акустическое поле в плоскости падения и в перпендикулярной плоскости имеет разные структуры. Амплитуда колебаний, прошедших через задержку в изделие, определяется амплитудой колебаний, излученных пьезопластиной в линию задержки, умноженной на коэффициент прозрачности для границы задержка— изделие при угле ввода а, соответствующем углу падения и на коэффициент, учитывающий затухание УЗК в задержке вдоль акустической оси  [c.217]

Основная задача анализа акустического тракта — оценка степени ослабления излученного (зондирующего) сигнала, пришедшего на приемник. На пути к приемнику излученный сигнал ослабляется по ряду причин. Наиболее существенно на амплитуду результирующего сигнала влияют акустические свойства контролируемого материала (вкорость ультразвука, дисперсия скорости, затухание), определяющие его прозрачность для ультразвука геометрические параметры изделия (кривизна, параметры шероховатости поверхности, через которую вводится ультразвук), влияющие прежде всего через изменение прозрачности контактного слоя, а также габаритные размеры изделия в зоне прозвучивания свойства и геометрия акустической задержки, определяющие степень акустического согласования пары преобразователь—изделие электроакустические параметры излучателя и приемника (частота колебаний, длительность импульсов, материалы пьезоэлемента и переходных слоев) ориентация пьезоэлемента, его геометрические размеры размеры, ориентация, конфигурация, параметры шероховатости и материал (шлак, металл, газ) дефекта взаимное расположение излучателя, дефекта и приемника траектория сканирования.  [c.103]

Аппарат Магистраль-1 дополнительно укомплектован двухканальной радиометрической системой наведения и реперным контейнером. Он предназначен для использования совместно с автоматизированным самоходным комплексом типа АКП (см. рис. 55, б). Ориентация рабочего источника излучения относительно, сварного шва производится с помощью реперного контейнера, снабженного узкой щелью и заряженного источником излучения с МЭД у-излучения 6- 10 Р/с на 1 м. Сцинтилляционные детекторы устанавливаются на самоходном комплексе в коллиматорах с узкими щелями. Система автоматики и наведения обеспечивает ориентацию рабочего источника излучения относительно контролируемого шва с погрешностью 2% диаметра трубы, а также выполнение следующей программы работ по командам от источника, находящегося в реперном контейнере замедление скорости движения самоходного комплекса и его остановку у шва (реперный контейнер установлен в зоне шва с открытой щелью) задержку времени, необходимую для удаления оператора из зоны контроля, и выдержку времени просвечивания (щель реперного контейнера закрыта) движение самоходного комплекса вперед или назад (реперный контейнер с открытой щелью переносится оператором от проконтролированного шва в сторону необходимого направления движения). МЭД излучения реперного источника при открытой щели контейнера меньше предельно допустимой МЭД, установленной санитарными правилами. Помимо указанных команд блок управления обеспечивает звуковую сигнализацию о движении комплекса, прекращении экспонирования, ограничении перемещения как в случае недопз стимого уменьшения емкости питающих аккумуляторов, так и при отсутствии команд от реперного источника, а также термостабилизацию узлов комплекса при пониженных температурах.  [c.95]

Мэъ и 11 Мэв выделяется с задержкой по времени (Р- и -излучение продуктов деления). Энергия, локализованная вблизи места деления, составляет 173 из которой 167 приходится на долю кинетической энергии продуктов деления (89% полной энергии). Этот расчет показывает, что с точностью до 10% можно считать источник тепла 1, прямо пропорциональным источнику нейтронов In(lg = nln). Коэффициент пропорциональности г , равный отношению источника тепла к источнику нейтронов, можно назвать удельной энергией (теплотой) ядер-ного превращения.  [c.67]

Акустич. волны в кристаллах используют для создания УЗ- и гиперзвуковых линий задержки, резонаторов, разл. устройств акустолюктроникп и акустоопти-ки, для излучения и приёма УЗ-сигпалов, пзмерснпг механич, деформации и напряжений, измерений модулей упругости и др. физ. величин.  [c.510]

МЁРА ДИСПЕРСИИ (ОМ) — величина, определяющая запаздывание импульсов излучения космич. объектов. Задержка радиоизлучения обусловлена тем, что показатель преломления плазмы зависит от длины волны X (см. Дисперсия волн). Длинные волны распространяются медленнее коротких, поэтому сигнал, испущенный одновременно на разных Я, приходит к наблюдателю на длинных волнах позже, чем на коротких. Величина запаздывания  [c.97]

Принцип временной нелинейной спектроскопии комбинац. рассеяния (нестационарной КАРС-спектроско-пии) поясняет рис. 6(Й). Комбинац. резонанс возбуждается двумя короткими лазерными импульсами, разность ср. частот излучения к-рых Шх — ближе к частоте Й. Короткий зондирующий импульс Едр с задержкой по отношению к возбуждающим импульсам используется для измерения кинетики затухания нелинейного отклика.  [c.299]

Эффекты изменений темп-ры и непрозрачности сами по себе ещё недостаточны для обеспечения раскачки П. 3. Во внутр. частях зоны ионизации, где у уменьшается в направлении от центра (достигая минимума около середины зоны), происходит задержка потока излучения при сжатии во внешних же частях згой зоны, где у увеличивается в направлении от центра, при сжатии может происходить усиленный отток тепла, т. е. будет вклад в затухание П, э. Суммарный раскачивающий эффект зоны ионизации может оказаться малым или вообще отсутствовать. Из-за очень низкой плотности самых внеш. слоёв их дульсацин характеризуются сильным теплообменом между отд. слоями, и оказывается, что такие разреженные слои не способны эффективно задерживать проходящий через них поток излучения в любой момент времени выделенный слой теряет через свою внеш. границу столько же энергии, сколько получает изнутри. Т. о., самые внеш. слои не вносят никакого вклада в возбуждение пли затухание П. 3.  [c.182]

Важной характеристикой С. является время задержки импульса ij, определяемое по моменту наблюдения максимума импульса, к-рое примерно на порядок превосходит длительность самого импульса С. ( о tKlnJV). Такая задержка импульса С. объясняется тем, что процесс распада начинается с изотропного спонтанного излучения, и лишь благодаря взаимодействию атомов через поле излучения в системе происходит нарастание корреляций дипольных моментов атомов, к-рые достигают макс, значения как раз в момент io.  [c.431]

Во втором варианте С. в процесс распространения излучения вводится переменная временная задержка т и измеряется автокорреляц. ф-ция /(т). Наиб, эффективно это реализуется в двухлучевом интерферометре Майкельсона СКанирование.м по разности хода Д = гт. Изменения сигнала приёмника при таком скаиирова-нии дают интерферограмму /(Д), фурье-образ к-рой представляет собой спектр Ф(а), где о — волновое число (а = i k = с, К — длина волны). [Подробнее см. в ст. Фурье-спектрометр. Ниже рассматриваются методы измерения Ф(v).]  [c.622]

Второй этап компрессии—сжатие импульса, на к-рый наложен чирп. На этой стадии импульс проходит через дисперсионную линию задержки, состоящую из пары установленных параллельно друг другу дифракционных решёток. При этом излучению каждой частоты соответствуют определ. угол дифракции и своя оптическая длина пути— она увеличивается с уменьшением о). Подбором угла падения пучка на решёточную пару можно добиться условий, при к-рых в одном из дифракционных максимумов отич. задержка переднего фронта импульса (с меньшей частотой) будет больше, чем задержка его заднего фронта (с большей за счёт чирпа частотой) в результате импульс на выходе решёточной пары будет скомпенсирован во времени. С помощью компрессии получены оптич. импульсы короче 10 фс достигнутая мин. длительность 6 фс (1987) близка к фундам. пределу (2—3 фс), соответствующему одному световому периоду.  [c.280]


Эксперим, схемы, использующие генерацию суммарной частоты, применяются и для получения ИК-спектров поглощения в разл. моменты времени. В этом случае образец возбуждается СКИ, а непрерывное ИК-излучение используется для зондирования. При возбуждении образца изменяются колебат. состояния составляющих его частиц и зондирующее непрерывное ИК-излучение модулируется этими изменениями, Промодулированное ИК-излучение направляется на нелинейный кристалл, где смешивается с лазерным импульсом. Измерение сигнала производится на суммарной частоте, т. е. в видимой части спектра, а измерение времени задержки позволяет регистрировать эволюцию ИК-поглощения.  [c.281]

Большинство твердотельных лазеров работает в режиме импульсного возбуждения, продолжающегося, как правило, <1 мс, и при отсутствии специальных мер имеет специфический, так называемый пичковый режим генерации. Несмотря на непрерывное в течение всего светового импульса накачки с интенсивностью / (рис. 5.3, а) возбуждение, излучение лазера (рис. 5.3, в) появляется через некоторое время задержки и имеет вид отдельных пичков с характерной длительностью мкс  [c.170]

Детекторы ионизирующих излучений в схемах Линии сверхвысокой частоты и их элементы Антенны и радиостанции Элементы пьезоэлектрические магнитофрикционные. Линии задержки Устройства связи  [c.280]

Имеются специальные программы для анализа электромагнитной совместимости компонентов в конструктивах РЭА. К ним, например, относятся программы семейства Omega PLUS, с помощью которых определяется форма сигналов в конструкциях с печатными платами, кабельными соединениями, микрополосковыми линиями анализируются статические электрические и магнитные поля в геометрических плоских и объемных конструкциях выполняется расчет полосковых и микрополосковых устройств, взаимных индуктивностей и емкостей многопроводных линий передачи моделируются электромагнитные излучения в печатных платах рассчитываются задержки с учетом паразитных емкостей и индуктивностей. При моделировании компоненты схемы представляются в виде линейных эквивалентных схем входных и выходных цепей, проводится частотный анализ, фиксируются максимальные амплитуды напряженностей электрического и магнитного полей, электрических токов и напряжений, результаты используются для принятия необходимых конструктивных решений.  [c.234]


Смотреть страницы где упоминается термин Задержки излучения : [c.69]    [c.182]    [c.358]    [c.535]    [c.152]    [c.153]    [c.246]    [c.174]    [c.346]    [c.414]    [c.306]    [c.182]    [c.597]    [c.40]   
Лазеры на гетероструктурах (1981) -- [ c.0 ]



ПОИСК



Время связь с начальной задержкой излучения

Задержки

Задержки излучения в ДГС-лазерах полосковой геометрии

Задержки излучения в ОГС-лазерах, длинные

Задержки излучения зависимость от превышения порог



© 2025 Mash-xxl.info Реклама на сайте