Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движущийся разрыв

II (2у.в < 2 < 2а). Параметры вещества перед и за фронтом ударной волны, связаны законами сохранения плотности потока вещества, плотности потока импульса и плотности потока энергии через движущийся разрыв  [c.175]

В заключение этого параграфа необходимо сделать замечание, аналогичное замечанию в конце 82. Там было отмечено, что среди различных возмущений состояния движущегося газа исключительными по своим свойствам являются возмущения энтропии (при постоянном давлении) и ротора скорости. Эти возмущения покоятся относительно газа, а не распространяются со скоростью звука. Поэтому поверхности, на которых испытывают какой-либо слабый разрыв непрерывности энтропия и ротор скорости ), покоятся относительно газа, а относительно неподвижной системы координат переносятся вместе с самим газом. Такие разрывы мы будем называть тангенциальными слабыми разрывами-, они проходят через линии тока и в этом отношении вполне аналогичны сильным тангенциальным разрывам.  [c.502]


В первом случае (который мы условно записываем в виде И- У ТУ у, рис. 78, й) из начального разрыва Н возникают две ударные волны У, распространяющиеся в противоположные стороны, и расположенный между ними тангенциальный разрыв 7. Этот случай осуществляется при столкновении двух масс газа, движущихся с большой скоростью навстречу друг другу.  [c.522]

На рис. 102, а изображено отражение ударной волны от границы раздела между движущимся и неподвижным газами. Область 5 есть область неподвижного газа, отделенная от движущегося газа тангенциальным разрывом. В обоих граничащих с нею областях I и 4 давление должно быть одинаковым (равным рь) Поскольку же в ударной волне давление возрастает, то ясно, что она должна отразиться от тангенциального разрыва в виде волны разрежения 3, понижающей давление до первоначального значения. В точке пересечения тангенциальный разрыв терпит излом.  [c.582]

Предположим сначала, что детонационная волна не соответствует точке Чепмена — Жуге. Тогда скорость ее распространения относительно остающегося за нею газа uj < С2. Легко видеть, что в таком случае за детонационной волной не могут следовать ни ударная волна, ни слабый разрыв (передний фронт волны разрежения). Действительно первая должна перемещаться относительно находящегося перед нею газа со скоростью, превышающей С2, а второй — со скоростью, равной -j в обоих случаях они перегоняли бы детонационную волну. Таким образом, при сделанном предположении оказывается невозможным уменьшить скорость движущегося за детонационной волной газа, т. е. невозможно удовлетворить граничному условию при л = 0.  [c.678]

Трудности, возникающие в эксперименте при фотографировании процесса распространения волн напряжений, обусловлены малой продолжительностью явления, сочетающейся при изучении движения поверхности с малостью перемещений, а при изучении движения фронта волны—с высокими значениями скорости распространения. Возникает потребность в синхронизации источника освещения с исследуемым явлением, при этом главная задача состоит в получении хорошего снимка. Для этого используют особенности изучаемого явления, так, например, удар снаряда о преграду можно использовать для начального включения искры, разрыв проволочек на пути движения снаряда в преграде обеспечивает последующие включения искры. Для получения одиночного изображения движущегося объекта применяется метод, в котором объект перекрывает пучок света между фотоэлементом и конденсатором. Синхронизация движения объекта с одиночной вспышкой достигается изменением расстояния между предметом и его положением, при котором он прерывает луч. Если фотографируемое явление сопровождается звуком, то можно использовать микрофонный адаптер. Синхронизация между явлениями, порождающими звук, и источником света достигается изменением положения предмета относительно микрофона ряд последовательных фотографий повторяющихся операций получают изменением положения микрофона от экспозиции к экспозиции. В зависимости от конкретной задачи возможны различные комбинации микрофонного адаптера и связанной с ним аппаратуры.  [c.30]


Из предыдущего следует, что сифонный трубопровод представляет собой трубопровод, работающий под разрежением (вакуумом). Наличие разрежения вызывает выделение из движущейся жидкости растворенного в ней воздуха, а при значительном разрежении может привести и к испарению самой жидкости. Поэтому для нормальной работы сифонного трубопровода необходимо, чтобы минимальное давление в нем, соответствующее наибольшему разрежению, не снижалось до такого давления, при котором начинается выделение паров жидкости, так как их наличие неизбежно повлекло бы за собой разрыв столба жидкости, а следо-  [c.238]

На основании дислокационного механизма зарождения трещин были разработаны различные модели разрушения материалов при пластической деформации при этом причинами разрушения могут быть 1) скопление (нагромождение) дислокаций в отдельных плоскостях скольжения 2) взаимодействие дислокаций, движущихся в пересекающихся системах скольжения 3) взаимодействие дефектов кристаллической решетки (безбарьерная модель) 4) разрыв и частичное смещение дислокационных стенок 5) взаимодействие упругих полей напряжений, образованных дислокациями.  [c.15]

В месте установки механизма выгрузки планка конвейера, по которой движутся кольца, разрезается, и в разрез вставляется поворотный рычаг 16, по торцу которого прокатывается кольцо 14. Груз 17 или пружина" 27 отклоняют рычаг 16 влево и пропускают кольцо 14 в механизм выгрузки, нижняя часть 29 которого гибким лотком соединена со станком. Падая, кольцо отжимает нижний конец рычага, который, поворачиваясь вправо, закрывает разрыв в планке и не позволяет очередному кольцу упасть в механизм, пока предыдущее кольцо не пройдет мимо рычага. Для того чтобы очередное кольцо (при отклоненном влево рычаге 16) успело упасть в механизм и не было заклинено между левым по ходу цепи краем отверстия и движущимся пальцем 23, между ними должно быть определенное расстояние. На отрезке пути, где такое расстояние менее допустимо, качающийся рычаг 24 рычажной передачи 25 от ролика 15 поворачивается, и толкатель 26 сдвигает рычаг 16 вправо, закрывая путь кольцу в механизм.  [c.348]

Все эти процессы волнообразование, срыв и выпадение капель, разрыв пузырей и т. п. — связаны с преодолением сил поверхностного натяжения под действием кинетической энергии движущегося потока.  [c.160]

Скачка постепенное накопление и рост зародышей жидкой фазы, во время которого расширяющийся пар сохраняет свойства однородного вещества, завершается бурным выпадением конденсата, переводящим систему в термодинамически равновесное состояние. В то же время, в литературе (см., например, [Л. 67, 68]) высказываются -соображения о том, что испарение жидкости при изобарном подводе тепла также носит скачкообразный характер. В связи с этим следует выяснить, в какой форме протекает процесс испарения в адиабатически движущейся жидкости имеет ли место непрерывное изменение состояния потока или же параметры среды претерпевают разрыв, вызванный внезапным парообразованием и местным превращением перегретой жидкости в двухфазную систему. Ответ на вопрос о возможности существования скачка испарения может быть получен из самых общих соображений.  [c.164]

Второй, переходный, режим характерен неустойчивостью движения, появлением локальных разрывов плотного слоя по длине и периметру канала. Скорость Unp, при которой возникает разрыв движущегося слоя, названа автором [Л. 109] предельной скоростью гравитационного движения.  [c.42]

Сравнение выражений (13) и (15), (16) позволяет оценить роль коэффициента h, который тем больше единицы, чем больше скорость. При с = пр коэффициент /г, а следовательно, и ол достигают оптимального значения, так как при плотность слоя резко падает (разрыв плотного слоя [Л. 13]. Визуальные наблюдения за движущимся окрашенным плотным слоем указывают на важную роль градиента скоростей в пограничном слое. Согласно рис. 4 отношение средней и максимальной скоростей потока меньше единицы для ll[c.657]

Ионизационные эффекты наблюдаются, когда ионизирующие излучения, проходя через вещество, вызывают в нем ионизацию, следствием чего является разрыв химических связей, образование радикалов и т.д. Облучение металлов увеличивает подвижность атомов и ускоряет фазовые и структурные превращения, ограничивает число активных полос скольжения, увеличивает число дислокаций, движущихся через полосы скольжения, что в конечном итоге приводит к упрочнению и охрупчиванию металлов.  [c.165]


Нарушение сплошности движущейся капельной жидкости, ее разрыва под действием растягивающих растяжений, возникающих при разрежении в рассматриваемой точке жидкости, называется кавитацией. При разрыве капельной жидкости образуются полости - кавитационные пузырьки, или каверны, заполненные паром, газом или их смесью. Кавитационные пузырьки образуются в тех местах, где давление в жидкости становится ниже некоторого критического. Критическое давление, при котором происходит разрыв жидкости, зависит от многих факторов чистоты жидкости, содержания газа, состояния поверхности, на которой возникает кавитация.  [c.17]

Мы считаем, что, создавая кавитацию при описанных условиях, мы разрывали жидкость там, где прежде никакой газовой фазы не существовало. Мы предполагаем, что применявшиеся в качестве движущей силы напряжения были малы (в лучшем случае несколько атмосфер). Поэтому любой разрыв должен был начинаться в весьма слабых местах, где на какой-то момент межмолекулярные силы приближались к нулю.  [c.43]

Рассмотрим, следуя [1, 2], уравнения, связывающие термодинамические и кинематические характеристики среды на сильном разрыве. Перейдем к системе координат, движущейся вместе с разрывом. В выбранной системе координат разрыв покоится, а вещество протекает через поверхность разрыва, скачком изменяя свои характеристики. Индексом О обозначим величины, втекающие в разрыв, индексом 1 —вытекающие из него.  [c.100]

Пружина 5 служит для замыкания контактов 2 и 3 . П. моментный (сх. б) имеет м., обеспечивающий быстрый разрыв контактных дуг. Рычаг 7 поворачивается под действием движущегося тела 5 и отводит защелку 9, после чего планка 8 резко поворачивается, контакты 2 и 3 размыкаются, контакты 1 и 2, замыкаются.  [c.225]

Итак, анализ переходного излучения в двумерной упругой системе показал следующее а) продольная реакция упругой системы, действующая на движущуюся нагрузку, переменна по величине и направлению б) при субкритических скоростях движения нагрузки максимум энергии излучения приходится на угол, зеркальный углу падения в) скорость движения объекта, при которой наступает разрыв контакта движущийся объект-упругая система, уменьшается (при прочих равных условиях) с увеличением угла падения .  [c.288]

К взаимодействию типа центрального удара относятся такие явления, как разрыв снаряда в полете, распад движущейся микрочастицы на две части и т. д. Удар, как указывалось, состоит из двух этапов а) сближения соударяющихся тел до такого взаимного положения, при котором относительная скорость тел становится равной нулю (скорости тел одинаковы) б) удаление тел друг от друга под действием внутренних сил. Удар можно рассматривать, начиная с момента, когда относительная скорость сблизившихся тел равна нулю, т. е. рассматривать только второй этап. Законы сохранения импульса и энергии в этом случае примут вид  [c.169]

В действительности, однако, все эти заключения имеют лишь весьма ограниченную применимость. Дело в том, что приведенное выше доказательство сохранения равенства rotv = 0 вдоль линии тока, строго говоря, неприменимо для линии, проходящей вдоль поверхности обтекаемого жидкостью твердого тела, уже просто потому, что ввиду наличия стенки нельзя провести в жидкости замкнутый контур, который охватывал бы собой такую линию тока. С этим обстоятельством связан тот факт, что уравнения движения идеальной жидкости допускают решения, в которых на поверхности обтекаемого жидкостью твердого тела происходит, как говорят, отрыв струй линии тока, следовавшие вдоль поверхности, в некотором месте отрываются от нее, уходя в глубь жидкости. В результате возникает картина течения, характеризующаяся наличием отходящей от тела поверхности тангенциального разрыва , на которой скорость жидкости (будучи направлена в каждой точке по касательной к поверхности) терпит разрыв непрерывности. Другими словами, вдоль этой поверхности один слой жидкости как бы скользит по другому (на рис. 1 изображено обтекание с поверхностью разрыва, отделяющей движущуюся жидкость от образующейся позади тела застойной области неподвижной жидкости). С математической точки зрения скачок тангенциальной составляющей скорости представляет собой, как известно, поверхностный ротор скорости.  [c.33]

Но так как для движущихся линеек совпадение начальных штрихов происходит только в какой-то единственный, определенный момент времени, то при равенстве длин линеек должны совпадать в этот же момент времени и конечные штрихи обеих линеек. Если же длины линеек не одинаковы, то п тот момент, когда совпадают начальные штрихи обеих линеек, конечный штрих одной из линеек совпадает не с конечным, а с каким-либо промежуточным штрихом другой линейки. Установив, с каким именно промежуточным штрихом второй линейки совпадает конечный штрих первой в тот момент, когда начальные штрихи обеих линеек совпадают, мы находим соотношение между длинами неподвижной и движущейся линеек. Таким образом, сравнение длин движущейся и неподвижной линеек требует констатации двух событий (совпадения определенных штрихов линеек), происходящих в один и тот же момент времени, но в разных местах (у двух концов линеек). Для этого должна быть обеспечена возможность определения одновременности двух событий, происходящих в разри и местах.  [c.258]

Заштрихованная на рисунке область соответствует подвижной площади крыла или глиссирующего днища на этой площади происходит силовое взаимодействие между крылом или днищем и жидкостью, и вырабатываются разрывные значения (рх и Ф2. В остальной части поверхности разрыва — в свободной вихревой пелене — удары уже не происходят, и разрыв = — ф2 сохраняется постоянным. Таким образом, в рассматриваемой схеме мы имеем возмущенное движение идеальной несжимаемой жидкости с поверхностью разрыва касательной скорости — вихревой пеленой, образующейся за движущимся крылом.  [c.288]

S поперечного сечения потока к смоченному периметру X, т. е. периметру части русла, находящейся под уровнем жидкости R=Slx. Г. р. служит обобщённой характеристикой размера сечения трубы некруглой формы или открытого русла. Для круглой трубы диаметром d Г. р. R dli, для прямоугольного открытого канала большой ширины он равен глубине воды, т. е. R=h для трапецеидальных каналов величина Г. р. изменяется от Л = А/2 в глубоких и узких каналах до в широких и мелких для течения между параллельными стенками с расстоянием Ь между ними R=b/2. ГИДРАВЛИЧЕСКИЙ УДАР — резкое повышение дав-ЛСШ1Я в трубопроводе с движущейся жидкостью, возникающее при быстром перекрытии запорных устройств, к-рос распространяется по трубопроводу в виде упругой волны со скоростью а. Г. у. может вызвать разрыв стенок труб и повреждение арматуры трубопровода. Основы теории F. у. дал Н. Е. Жуковский (18У8).  [c.460]


Структура У. в. У. в., рассматриваемая в гидродинамике как разрыв, в действительности представляет собой переходный слой конечной протяжённости, к-рую называют ш и р и -н о й У. в. В нём происходят необратимые процессы перехода вещества из нач. состояния перед У. в. в конечное состояние за ней. В плотных газах ширина У. в. обычно пренебрежимо мала по сравнению с характерными размерами областей не-прерьшного течения по обе стороны У. в. Но в разреженных газах нередки случаи, когда это не так. Напр., на больших высотах в атмосфере У, в., движущаяся перед сверхзвуковым летательным аппаратом, может иметь ширину, сравнимую с рассгоянием от начала переходного слоя до поверхности аппарата. Это необходимо учитывать при расчетах аэродинамики и температурного режима на поверхности.  [c.208]

О природе кавитации и механизма ее разрушительного действия на гидравлические агрегаты и их элементы существует несколько гипотез, наиболее распространенная из которых сводится к следующему. При понижении давления в какой-либо точке потока жидкости ниже давления насыщенных ее паров при данной температуре жидкость вскипает (происходит ее разрыв), выделившиеся же пузырьки пара увлекаются потоком и переносятся в область более высокого давления, в которой паровые пузырьки конденсируются (смыкаются). Так как процесс конденсации парового пузырька (каверны) происходит мгновенно, частицы жидкости перемещаются к его центру с большой скоростью, в результате кинетическая энергия соударяющихся частиц жидкости вызывает в момент завершения конденсации (в момент смыкания пузырьков) местные гидравлические удары, сопровождающиеся резкими забросами давления и температуры в центрах конденсации. Если конденсация паровых пузырьков будет происходить у стенки канала, то последняя будет подвергаться со стороны движущихся частиц жидкости непрерывным гидравлическим микроударам. В результате при длительной кавитации под действием указанных гидравлических ударов и одновременном воздействии высокой температуры, развивающейся в центрах конденсации, происходит поверхностное разрушение (эрозия) деталей.  [c.45]

Для дальнейшего исследования поставленных для системы (1.4) задач с началь ными данными (1.5) на линии г = О будем предполагать, что функции Ф и Г имеют непрерывные четвертые производные, содержащие дифференцирование дважды по г и (f (независимо от порядка дифференцирования). Это предположение естественно. Такое свойство функции Ф и Г осуществляется в ряде конкретных течений, например (см. также [1]), в автомодельном течении, возникающем за конической нормальной детонационной волной, вызванной движением с постоянной скоростью точечного пни ципрующего источника. В этом течении, исследованном впервые в [5], автомодельная двойная волна через слабый разрыв примыкает к области движущегося с постоянной скоростью однородного газа.  [c.115]

Переходное излучение упругих волн, будучи схожим с переход ным излучением электромагнитных и звуковых волн вследствие общефизичности эффекта, имеет свои особенности. Например, в процессе излучения может произойти разрыв контакта движущийся объект - упругая система. Кроме того, механические приложения теории требуют ответа на многие вопросы, не столь актуальные в электродинамике и акустике. Поэтому в данном обзоре внимание уделено как классическим вопросам о спектре и реакции излучения, так и практически важным проблемам резонанса, неустойчивости колебаний и разрыва контакта, имеющим место в процессе переходного излучения упругих волн.  [c.234]

Пережодное излучение в полуограниченной балке. Разрыв контакта балка—движущаяся масса  [c.247]

Пережодное излучение в полуограиичеииой пластине. Спектрально-угловая плотность энергии излучения, реакция излучения, разрыв контакта пластина—движущаяся масса  [c.283]

В пользу предложенного объяснения свидетельствует и тот факт, что вязкость разрушения сталей 10ГН2МФА и 15Г2АФДпс при циклическом нагружении с частотой нагружения 0,05 и 50 Гц и с наложением ударов на гармоническое нагружение имеет одинаковые значения. Очевидно, даже при циклическом нагружении с небольшой частотой при инициировании хрупкого разрушения в циклически деформированной пластической области в вершине трещины скорость деформации впереди движущейся трещины повышается настолько, что увеличение скорости приложения нагрузки в 1000 раз уже не приводит к дальнейшему увеличению скорости деформации в вершине трещины и, следовательно, к снижению величины критического коэффициента интенсивности напряжений. Снижение величины критического коэффициента интенсивности напряжений, полученной при монотонном нагружении, до величины, полученной при циклическом нагружении, происходит по экспоненциальной зависимости от числа циклов нагружения и завершается за 10 циклов (см. рис. 225). Это снижение происходит несколько интенсивнее при симметричном нагружении, чем при пульсирующем. Большое практическое значение имеет разработка методов классификации конструкционных материалов по чувствительности характеристик вязкости разру-  [c.326]

В классической физике очень четко конкретизируются и находят свое воплощение философские категории диалектического материализма, а методологические принципы физических исследований имели большое влияние на разработку гносеологических вопросов. В ней полно и всесторонне воплощена сущность взаимного влияния и взаимопроникновения науки и философии. Это обстоятельство имеет большое мировоззренческое значение. Во всех четырех томах курса мировоззренческим вопросам уделено должное внимание. Достаточно полное освещение нашло диалектическое единство пространства, времени, движения и материи, что отразилось также и в ряде структурных особенностей курса. В частности, неприемлемо, как это часто делается, раскрывать содержание понятий пространства, времени и движения в рамках кинематики без установления органической связи между ними, а начало изложения вопроса о связи этих понятий с понятием материи откладывать до динамики, когда раскрывается понятие массы. Такой разрыв противоречит самой сущности пространства и времени, как форм существования материи, а движения — как способа ее существования. Этот разрыв ликвидируется изложением В самом начале курса физической кинематики, вводящим читателя в круг идей теории относительности, которая дает достаточно ясное воплощение в конкретной науке положения диалектического материализма о неразрывной связи пространства, времени, движения и материи. Суть этого диалектического единства прослеживается и уточняется в последующих разделах курса. Достаточно полное отражение в курсе классической физики находят вопросы всеобщей связи явлений, неуничтожаемости материи и движения, причинности и детерминизма, трактовки законов как форм выражения связи явлений и т. д. Одним словом, в классической физике воплощение в конкретном знании общих философских категорий диалектического материализма и положений марксистско-ленинской гносеологии столь полно и совершенно, что самым актуальным становится вопрос о характере незавершенности этого конкретного знания и о содержании незавершенности единства конкретного знания с общефилософскими и гносеологическими категориями. Актуальность этого вопроса обусловливается тем, что только незавершенность конкретного знания и его единства с общефилософскими и гносеологическими категориями является источником и движущей силой развития как конкретного знания, так и философских и гносеологических категорий. В рамках классической физики эта незавершенность выступает лишь в потенциальной форме и не составляет действительного отрицания завершенности. Отрицание достигнутой в классической физике завершенности знания и его единства с общефилософскими и гносеологическими категориями осуществляется лишь в рамках квантовой физики и в соответствии с диалектикой отрицания приводит не только к дальнейшему развитию физики, но и дает мощный стимул разработке общефилософских и гносеологических проблем.  [c.347]



Смотреть страницы где упоминается термин Движущийся разрыв : [c.50]    [c.514]    [c.590]    [c.16]    [c.318]    [c.64]    [c.87]    [c.243]    [c.167]    [c.124]    [c.552]    [c.132]    [c.45]    [c.27]    [c.189]    [c.250]    [c.78]   
Линейные и нелинейные волны (0) -- [ c.46 , c.47 ]



ПОИСК



Движущийся разрыв method)

Движущийся разрыв Двух времен» метод (two-timing

Задача о поршне, движущемся внутрь области, занятой газом. Образование разрыва

Переходное излучение в полуограниченной балке. Разрыв контакта балка-движущаяся масса

Переходное излучение в полуограниченной пластине. Спектрально-угловая плотность энергии излучения, реакция излучения, разрыв контакта пластина-движущаяся масса

Разрыв



© 2025 Mash-xxl.info Реклама на сайте