Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Боры структура

Исследование микроструктуры указывает на то, что у сплавов с 5 10 15% хрома и 1 % бора структура двухфазна сплавы, содержащие до 0,5% Сг  [c.152]

Сталь Форт и вел л имеет состав 0,2% С 0,5% Мо 0,003% В. Легирование молибденом и бором, замедляющими распад аустенита, приводит к получению бейнитной структуры при охлаждении на воздухе. При содержа-  [c.401]

Как показал В. Г. Петров, модифицирование горячих цинковых покрытий рением (0,01%), церием (0,1%), теллуром (0,001%) или бором (0,001%) повышает защитные свойства покрытий в 1,7—2,0 раза и устраняет нежелательное изменение полярности цинкового покрытия по отношению к железу при повышенных температурах в связи с их меньшей электрохимической гетерогенностью (пониженное содержание фаз, обогащенных железом, и значительная протяженность ri-фазы с измельченной структурой).  [c.357]


Кроме того, применяют борирование в вакууме, с нагревом ТВЧ и др. Структура и строение борированного слоя показаны на диаграмме состояния Ре — В (рис. 10.20). Вначале осуществляется насыщение бором у—(а) твердого раствора Ге с образованием борного аустенита (выше 915° С) и феррита (ниже 915° С). При достижении предела насыщения твердого раствора происходит образование тетрагонального Л-борида (9% В). Сверх этой концентрации образуется борид ГеВ (16% В) с ромбической решеткой е-фазы.  [c.151]

Рисунок 3.28 - Схема для подуровней первых четырех электронных оболочек " При переходе от бора к углероду, от углерода к азоту и т.д. увеличивается число электронов в р - подгруппы (6 электронов). Тогда вторая оболочка получает устойчивую электронную структуру, состоящую m 8 электронов на 2s и 2р подуровнях. Последовательность заполнения оболочек электронами подуровней для различных элементов (с 1 по 36) представлена в таблице 3.8. В IV-ом периоде подобно Ш-му периоду, который начинается с калия (№ 19) заполняются 3s, Зр, 3d и 4s подуровни. Рисунок 3.28 - Схема для подуровней первых четырех <a href="/info/13887">электронных оболочек</a> " При переходе от бора к углероду, от углерода к азоту и т.д. увеличивается <a href="/info/535974">число электронов</a> в р - подгруппы (6 электронов). Тогда вторая оболочка получает устойчивую <a href="/info/324803">электронную структуру</a>, состоящую m 8 электронов на 2s и 2р подуровнях. Последовательность заполнения <a href="/info/13887">оболочек электронами</a> подуровней для различных элементов (с 1 по 36) представлена в таблице 3.8. В IV-ом периоде подобно Ш-му периоду, который начинается с калия (№ 19) заполняются 3s, Зр, 3d и 4s подуровни.
Мд g — гиромагнитное отношение а == e-j-fi — постоянная тонкой структуры, Мд — магнетон Бора.  [c.121]

Рассмотрим линейное штарковское расщепление водородных линий, которое имеет место, если пренебречь тонкой структурой уровней атома водорода (рис. 99, область III). Расстояние ОС (рис. 98) между ядром О и электрическим центром тяжести С орбиты по Бору равно  [c.266]

Кроме карбидов и нитридов титана, перспективными соединениями для покрытий являются бориды и нитриды кремния и бора, оксиды алюминия, циркония, хрома, а также алюминиды металлов. К настоящему времени разработаны покрытия сложного состава по типу (Ti- r) N и (Ti-Mo)-N. Однако обеспечение прочностных характеристик таких композиций требует более строгого соблюдения назначенных режимов ионно-плазменной обработки для получения двухфазной структуры нитридов металлов с составом, близким к стехиометрическому составу [92]. Недостаток указанных покрытий - их повышенная хрупкость. Устранение данного недостатка в определенной степени воз-  [c.247]

Рис. 136. Изменение числа магнетонов Бора твердых растворов, образованных ферритами со структурой обращенной и нормальной шпинелей Рис. 136. Изменение числа <a href="/info/13634">магнетонов Бора</a> <a href="/info/1703">твердых растворов</a>, образованных ферритами со структурой обращенной и нормальной шпинелей

Аморфные магнитные материалы. В последнее время уделяется большое внимание вопросам получения и применения аморфных магнитных материалов (АММ). Такие материалы получаются при быстром охлаждении из расплавленного состояния без кристаллизации. Быстрое охлаждение расплавленного сплава достигается различными технологическими приемами, среди которых есть непрерывные или полунепрерывные методы. Аморфная структура получается при скорости охлаждения расплава до 10 °С/с. Современными методами можно изготовить из аморфного материала проволоку или ленту различного профиля непосредственно из расплава со скоростью до 1800 м/мин. АММ обладает очень высокими магнитными характеристиками наряду с повышенным сопротивлением. Перспективными высокопроницаемыми материалами являются аморфные сплавы железа и никеля с добавками хрома, молибдена, бора, кремния, фосфора, углерода или алюминия с магнитной проницаемостью до 500, коэрцитивной силой Не около 1 А/м и индукцией насыщения В., от 0,6 до 1,2 Тл.  [c.99]

Кручение пластинок с выемкой по торцовым поверхностям может осуществляться при поперечном сечении ее рабочей части, выполненной в форме круга, кольца и квадрата. Наиболее приемлемым с точки зрения характера распределения касательных напряжений является сечение в виде кольца. Но процесс его изготовления намного сложнее, чем изготовление квадратного сечения. Значительные трудности возникают при обработке боро-, органо-и углепластиков. Кроме того, в местах выемки и сверления по наружным поверхностям наблюдается повреждение структуры материала. Пределы прочности при сдвиге таких образцов для большинства исследованных композиционных материалов оказываются ниже, чем значения, полученные на образцах с рабочей частью в форме квадрата (табл. 2.10). Технология изготовления последних весьма проста, не требует специальных инструментов и приспособлений. Однако размеры поперечного сечения квадрата, как показывают исследования, оказывают заметное влияние на сдвиговую прочность.  [c.47]

Резюмируя содержание последних двух параграфов, мы можем сказать, что выводы из квантовой механики подтверждаются всем разнообразным экспериментальным материалом, который подтверждал и теорию Бора. Вместе с тем, квантовая механика не обладает теми внутренними затруднениями логического характера, которые были свойственны теории Бора. За пределами этой теории по-прежнему остается тонкая структура линий водорода и сходных с ним ионов, В дальнейшем мы увидим, что тонкая структура объясняется, если принять гипотезу о наличии собственного магнитного момента у электронов. Но главные успехи квантовой механики относятся к теории атомов с несколькими валентными электронами. Теория Бора даже в простейшем случае многоэлектронной системы — в случае атома гелия и сходных с ним ионов — давала неверные значения энергий стационарных состояний. Квантовая механика позволяет вычислить для гелия эти энергии, которые находятся в очень хорошем согласии с экспериментальными данными.  [c.108]

В гл. I мы указывали, что линии водорода обладают тонкой структурой каждая из линий состоит из нескольких очень тесно расположенных составляющих (на расстоянии сотых долей ангстрема для линий в видимой части спектра). Первая попытка объяснить эту тонкую структуру принадлежит Зоммерфельду ( 5), который, пользуясь моделью Бора, учитывал зависимость массы электрона от скорости в соответствии с принципом относительности. Теория Зоммерфельда хорошо объясняла число и относительное расположение составляющих тонкой структуры, но находилась в противоречии с фактами, относящимися к влиянию на структуру линий внешнего магнитного поля ( 65).  [c.123]

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЦЕРИЯ И БОРА НА СТРУКТУРУ И СВОЙСТВА АЛЮМИНИДНЫХ И СИЛИЦИДНЫХ ПОКРЫТИЙ НА НИОБИИ  [c.44]

Хорошими диэлектрическими характеристиками обладают окислы алюминия, магния, бериллия, нитриды алюминия, бора, кремния и т. д. У электроизоляционных покрытий пробойная напряженность при прочих равных условиях максимальна при минимальной пористости. На электрическую прочность оказывают влияние также характер распределения пор по размерам, метод и технология напыления, чистота исходного порошка, температура и др. [15, 16, 61 117, 136]. Кроме того, покрытия обладают большей дефектностью структуры и повышенным содержанием примесей в сравнений с компактным материалом, что также отрицательно сказывается на уровне электрической прочности [136]. Полагают, что величина напряженности пробоя и ар и толщина керамического электроизоляционного покрытия б связаны зависимостью [61 ]  [c.85]


Структура Н1 ЗШ1 Х бор1 дов (богатых металлом) определяется металлической подрешеткой. В высших борпдах (богатых бором) структуру определяют атомы бора, сбразующ1 е жесткие подре-шетки с ковалентным связям бор — бор в 1 де сеток.  [c.140]

Сверхтвердые керамические материалы — композиционные керамические материалы, получаемые введением различных легирующих добавок и наполнителей в исходный нитрид бора. Структура таких материалов образована прочно связанными мельчайшими кристаллитамии, следовательно, они являются синтетическими поликристаллическими материалами.  [c.346]

Наиболее широкое применение в промышлеппости находят электроды, системы легирования углерод-хром-бор обеспечивающие получение в структуре наплавленного металла значительное количество упрочняющей фазы, содержащий бор в карбидах или боридах [66] Т 590 с 1,5...4,0% углерода, 18,0... 27,0%> хрома и 0,5... 1,5%> бора структура наплавлеппого ими металла, состоит из ледебурита и остаточного аустенита упрочнённых первичными карбидами МетСз и боридами Сг2(В С).  [c.31]

Модификацией обычного углеродного термометра является термометр из пористого стекла, насыщенного углеродом [71]. Вначале для этого термометра изготавливается пористое стекло путем вытравливания богатой бором компоненты из фазоразделенного щелочного боросиликатного стекла. В результате получается беспорядочная структура, представляющая собой плотно-упакованные кремнеземные шарики диаметром около 30 нм, с порами размером 3—4 нм. В этих порах затем осаждают волокнистый углерод. Из плиток такого стекла нарезают стерженьки размером примерно 5x2x1 мм на торцы стерженьков наносят золото-нихромовые обкладки, к которым на серебряной амальгаме крепятся медные выводы. После тепловой обработки для удаления воды и газов элементы запаиваются в платиновые капсулы, заполненные гелием.  [c.249]

Для покрытий применяют материалы со слоистой структурой (графит, дисульфид молибдена, нитрид бора и другие со свя-зуюнгими в виде смол или клеев) химически активные (фосфаты, фториды и др.), наносимые путем химических реакций, а также металлические покрытия серебром.  [c.147]

Ядерный магнетон в Мр1т=1836 раз меньше магнетона Бора 1б. Малая величина магнитных моментов ядер по сравнению с магнитными моментами электронов в атоме объясняет узость сверхтонкой структуры спектральных линий, составляющей по порядку величины 10-3 0 мультиплетного расщепления.  [c.67]

В 6 будут обсуждаться результаты исследования манганиновой методикой ударных волн в железе (А. В. Анаиыш и др., 1973). Аналогичное исследование нитрида бора и графита, когда реализуются фазовые иревращепия в алмазоиодобиые структуры, выполнено А. В. Ананьиным и др. (1978).  [c.248]

Анизотропия кристаллов объясняется их атомной структурой, но существуют материалы, у которых определяющие их анизотропию структурные элементы имеют значительно большие размеры. Примером может служить древесина, расположение видимых невооруженным глазом волокон создает относительно высокую прочность в направлении оси ствола и малую прочность в поперечном направлении. В этом отношении можно сказать, что природа распорядилась прочностью целлюлозы, из которой, в основном, состоит древесина, наилучншм образом. По этому принципу в технике создают так называемые композитные материалы, примером которых могут служить стеклопластики. Тонкая стеклянная нить имеет высокую прочность, укладывая слои такой нити, пропитывая их смолой и полимеризируя, получают монолитные пластины. Чередуя направления укладки слоев, можно менять степень и характер анизотропии с тем, чтобы использовать прочность волокна наивыгоднейпшм образом. В последние годы были получены и промышленно освоены высокопрочные волокна, значительно превосходящие по своим свойствам стеклянное волокно и, что особенно важно, имеющие значительно более высокий модуль упругости. Наибольшее распространение получили волокна бора и углерода, которыми армируют пластики и металлы.  [c.41]

Кристаллические зерна бора растут на поверхности вольфрамовой нити, образуя ноликристаллическую структуру с радиальной ориентацией. Дефекты поверхности нити порождают неправильности кристаллической структуры и создают дефекты волокна, снижающие его прочность. Отсюда — высокие требования к чистоте поверхности вольфрамовой нити. Возможность замены вольфрама нитями из стеклоуглерода обсуждалась в литературе, некоторый практический опыт в этом направлении имеется, однако после нескольких лет работы и большой рекламы (фирма АВКО в США) борного волокна на угольной подложке на рынке практически нет.  [c.687]

Стали мартенситного и мартенситно-ферритного классов содержат 8 13% Сг и легируются вольфрамом, молибденом, ванадием, ниобием, бором. Эти стали, помимо более высокого значения длительной прочности, обладают высокой жаропрочностью Структура этих сталей состоит из мартенсита, феррита и карбидов типа МгзСб, М С, МгС, МС и фазы Лавеса - Рв2 У, Ре Мо. Высокая жаропрочность достигается за счет упрочнения твердого раствора, образования карбидов и интерметаллидных фаз Предельная рабочая температура 580...600 С. Стали применяют после закалки на воздуосе или в масле от 1050. 1100 С и отпуска при 650. 750 С. Высокие температуры  [c.102]

Изложенные представления о возникновении магнитного момента в ферритах дают лишь общую тенденцию изменения свойств, от которой возможны отклонения. В большинстве случаев экспериментально определяемые магнитные моменты ферритов отличаются от расчетных. Например, магниевый феррит, который не должен иметь нескомпенсированн эго магнетизма, в действительности ферромагнитен, и его молекула имеет магнитный момент, близкий к магнетону Бора. В ферритах со структурой обраш,енной шпинели ионы F e не всегда поровну располагаются в подрешетках Л и В, что приводит к появлению дополнительного нескомпенсированного момента.  [c.187]

Небольшие присадки бора (0,005—0,05 %) модифицируют литую структуру молибдена [1]. Хрупкий литой молибден электронно-лучевой плавки, содержащий 0,0009—0,002 % О, <0,0005 % N, <0,0005 % Н, <0,005 % С, при легких ударах молотка распадается на зерна (монокристаллы) хотя каждое отдельное зерно пластично. Легированный бором литой молибден выдерживает 30—45 %-ные обжатия при пспы-  [c.132]


Прессование полуфабрикатов проводилось при давлении (до 4—6 МПа), значительно превышающем давление прессования обычных угле-, боро- и стеклопластиков, что обусловлено необходимостью уплотнения материала и снижения пористости. Отклонения давления прессования от указанного значения могут быть причиной большой пористости или разрушения волокон нитевидными кристаллами. Температурный режим получения материалов на основе вискернзрванных волокон соответствовал температурному режиму, принятому для эпоксидного связующего. Технология получения рассматриваемого класса материалов в значительно большей степени, чем получение других материалов, определяет их структуру и свойства. Обусловлено это тем, что материалы, изготовленные на основе вискеризован-ных волокон или тканей, имеют основную арматуру — волокна или ткань и вспомогательную — кристаллы — предназначенную для улучшения сдвиговых свойств и прочности на отрыв в трансверсальном направлении. Указанные свойства определяются характером расположения нитевидных кристаллов. Последние могут распределяться хаотически во всем объеме материала или только в трансверсальных плоскостях, что определяется способом вискернзации и технологией получения материалов. Хаотическое распределение кристаллов во всел объеме является наиболее приемлемым способом одновременного повышения сдвиговых свойств материала во всех трех плоскостях. Модули сдвига в этом  [c.202]

В первую очередь сверхтонкая структура спектральных линий обусловливается наличием у ядер магнитного момента связанного с механическим моментом Магнитный характер взаимодействия между ядром и электронной оболочкой атома позволяет перенести на сверхтонкую структуру все рассуждения, которые применялись для объяснения обычной мультиплетной структуры. Вместе с тем, тот факт, что сверхтонкая структура, грубо говоря, в тысячу раз уже обычной мультиплетной структуры, заставляет предположить. что и магнитный момент ядер составляет приблизительно Viooo от магнетона Бора [Хд. Сходство сверхтонкой структуры с мультиплетной позволяет, прежде всего, построить векторную схему, которая дает возможность определять число компонент.- Если до сих пор мы характеризовали состояние атома результирующим моментом то при наличии ядерного  [c.521]

Структура и свойства Со—Впокрытнй Исотедова НИН ИФХ АН СССР показывают что полученные Со — В покрытия представляют собой сочетания кристаллической и аморфной фаз Кристаллическая структура представляет собой твердый раствор вне дрения бора и водорода в гексагональном а Со  [c.62]

Чтобы решить две последние задачи необходимо изменить свойства Дисилицида. Весьма полезным для этой цели может оказаться изучение влияния легирующих элементов на свойства WSi2. Некоторые исследователи изучали влияние легирующих добавок В, Сг, Ре, А1 на жаростойкость силицидов. Замена кремния бором приводит к образованию устойчивых тройных фаз, но существенного улучшения коррозионных свойств авторы работ [13, 14] не наблюдали. Системы Мо—81—А1 и W—81—А1 описаны в работах [15, 16]. В обеих системах обнаружены тройные соединения Ме (81, А1)2, имеющие гексагональную структуру (С 40). Причем в системе У—81—А1 тройная фаза имеет значительную область гомогенности. При содержаниях А1 меньших, чем 13 ат. %, перестройки тетрагональной решетки не происходит, и алюминий находится в решетке дисилицида в виде твердого раствора замещения.  [c.297]

Стеклообразные составляющие в размягченном состоянии быстро свариваются друг с другом, и таким образом формируется плотное покрытие из Мо312—В, способное защитить ниобий от газовой коррозии. Покрытия, полученные вышеуказанным методом, имеют гетерогенную структуру. Частицы из Мо312, легированные бором, равномерно распределены в стеклообразной боросиликатной матрице.  [c.111]

В работе изучено влияние церия и бора на структуру и свойства алюминидных и сили-цидных покрытий на ниобии. Установлено, что введение церия в алюминидное покрытие приводит к измельчению зерна в покрытии, снижению тенденции к образованию столбчатой структуры и склонности к высокотемпературному росту зерен. Введение бора способствует образованию при температурах 650—900° С на поверхности силицидного покрытия защитной стекловидной плевки и повышает его жаростойкость в широком диапазоне температур. Лит. — 5 назв., ил. — 1.  [c.259]

Образцы для исследования получали из механической смеси порошков. Использовали промьпнленные материалы никель ПНЭ-1, железо и кобальт карбонильные, хром восстановленный ПХС, бор аморфный, уголь активированный. Из смесей прессовали таблетки и оплавляли в вакууме (10 —10 мм рт. ст.) при 1200 — 1250 °С в течение 30 мин. Получали компактные образцы с объемной пористостью 2—3 %, из которых готовили полированные шлифы. Структуру сплавов выявляли химическим травлением. Фазовый состав контролировали металлографическим и рентгеиофазовым методами.  [c.111]

Исходньши компонентами покрытия служили электролитический никель, кристаллический кремний, аморфный бор, активированный уголь. Для введения хрома использовали чистый хром, нихром и карбид хрома. Элементный состав во всех случаях сохраняли постоянным. Покрытие наносили на образцы из нержавеющей стали 1Х18Н9Т. Дисперсионной средой в шликере служил спиртово-водный раствор 1 1. Для обеспечения седиментационной устойчивости суспензии вводили 2 мае. % бентонита. Покрытие формировали в вакууме при температуре 1100 °С. Для исследования структуры покрытия из образцов готовили полированные шлифы.  [c.114]


Смотреть страницы где упоминается термин Боры структура : [c.364]    [c.32]    [c.127]    [c.351]    [c.395]    [c.167]    [c.39]    [c.274]    [c.125]    [c.161]    [c.251]    [c.51]    [c.7]    [c.445]    [c.259]   
Линейные и нелинейные волны (0) -- [ c.463 ]



ПОИСК



Борова

Бору

Борусевич

Модель структуры боры



© 2025 Mash-xxl.info Реклама на сайте