Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Черный углерод

Стеарат цинка. ...........0,9 Черный углерод........7,5  [c.235]

Черный углерод 422. Четырехполюсник 612.  [c.466]

Ископаемые твердые топлива (за исключением сланцев) являются продуктами разложения органической массы растений. Самое молодое из них — торф, представляет собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по возрасту являются бурые угли — землистая или черная однородная масса, которая при длительном хранении на воздухе частично окисляется ( выветривается ) и рассыпается в порошок. Затем идут каменные угли, обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них — антрацитов — претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твердостью. Возобновляемым твердым топливом яв-  [c.118]


Впоследствии свои высказывания о влиянии углерода на положение критических точек Чернов изобразил графически (рис. 129), воспроизведя при этом очертания важнейших линий диаграммы железо — углерод.  [c.159]

На фиг. 5.18 и 5.19 представлены параметры М, N я Q, вычисленные в приближении четвертого порядка (и = 4) при заданной отражательной способности граничных стенок. При малых значениях То и а влияние анизотропного рассеяния достаточно хорошо описывается изотропным приближением. Кроме того, даже при То = оо множество частиц углерода еще не представляет собой абсолютно черного тела. В работе [503] приведены подробные данные по этому вопросу.  [c.246]

Черные металлы, содержащие более 2% углерода, называются чугунами. В зависимости от структуры все чугуны делятся на белые и серые. Белые чугуны обладают высокой твердостью и хрупкостью, плохо обрабатываются, поэтому детали из них изготовляют преимущественно литьем. Кроме того, белые чугуны используют как материал для производства других сортов чугуна и сталей.  [c.158]

Основной продукцией черной металлургии является углеродистая сталь. Это сплав железа с углеродом,в котором углерода до 2,14%.  [c.79]

Водород и оксид углерода обладают ценными свойствами энергоносителей и химического сырья. Они могут использоваться для повыщения эффективности традиционных производств, а также для создания и развития новых технологических процессов и водородной энергетики. Глубокий холод жидких водорода и оксида углерода используется для сжижения воздуха с последующим его разделением на кислород и азот. Это исключает (в основной части) традиционный расход электроэнергии на получение соответствующего количества кислорода и азота. Азот вместе с водородом и оксидом углерода может быть направлен для синтеза аммиака, карбамида и других продуктов связанного азота. В результате из процесса исключается природный газ. Кислород используется для традиционной интенсификации процесса в доменном, конвертерном и других производствах черной и цветной металлургии.  [c.398]

Попытка нанести таким же способом цирконий не увенчалась успехом, слой получился черный, хотя и прочно сцепленный с подложкой. Окисление при степени разрежения в установке 10 мм рт. ст. мало вероятно, возможно насыщение циркония углеродом из масла насоса. Природа пленки не выяснялась.  [c.78]

Вряд ли найдется в природе еще какой-нибудь элемент, который обладал бы столь противоположными свойствами, как углерод, выступая в обличьях, например, алмаза и графита. Обычно бесцветный, прозрачный, твердый (рекордсмен среди природных материалов), привлекательный, драгоценный (самого высокого класса) алмаз и серо-черный, непрозрачный, жирный иа ощупь, чешуйчатый, очень мягкий, с металлическим блеском графит Трудно поверить в их близкое родство. Но модификации углерода служат убедительным свидетельством их родственных связей. Так, при температурах выше 1400 °С в вакууме или инертной атмосфере можно наблюдать превращение алмаза в графит. Нагрев некоторых разновидностей аморфного углерода (кокс, сажа, древесный уголь) выше 1500—1600 °С без доступа воздуха вызывает превращение их в графит.  [c.52]


В гл. 6 рассматриваются более подробно вопросы использования солнечной энергии для получения теплоты. В данной главе остановимся только на системах, предназначенных для преобразования солнечной энергии в электрическую. Начнем поэтому с рассмотрения тех характеристик, которые являются наиболее важными при этих процессах, прежде всего— спектр солнечного излучения. На рис. 5.6 показано, как распределена по длинам волн энергия солнечного излучения, падающего в единицу времени на единицу поверхности и приходящегося на единичный интервал длин волн. Спектр, измеренный на верхней границе земной атмосферы, очень хорошо совпадает со спектром излучения абсолютно черного тела при температуре 6000 К. Абсолютно черным телом называется физическое тело, которое излучает энергию во всем спектре и поглощает все падающее на него излучение независимо от длин волн. Таких тел в природе не существует, но существуют тела с очень близкими свойствами. Понятие абсолютно черного тела играет важную роль в физике. Так, решая задачу о распределении излучения абсолютно черного тела по длинам волн, Макс Планк впервые сформулировал принципы квантовой механики. В распределении солнечного излучения по длинам волн, измеренном вблизи поверхности Земли, имеются большие провалы, обусловленные поглощением излучения на отдельных частотах или в отдельных интервалах частот атмосферными газами — кислородом, озоном, двуокисью углерода — и парами воды.  [c.95]

По размеру частиц (от 10 до 600 нм) технический углерод занимает особое место среди пигментов. Наиболее высокую дисперсность имеет газовый канальный (диаметр частиц 10— 40 нм). С уменьшением диаметра частиц до 25 нм черный цвет становится более глубоким, а красящая способность возрастает дальнейшее уменьшение диаметра частиц приводит к постепенному снижению красящей способности пигмента.  [c.65]

Технический углерод широко применяется в лакокрасочной промышленности для приготовления черных и серых красок и эмалей. В грунтовку его вводить не рекомендуется из-за возможного ускорения коррозии металла.  [c.66]

Основоположником научного металловедения и современных методов термической обработки стали — отцом металлографии — является Дмитрий Константинович Чернов (1839—1921 гг.) [74]. Открытые им критические точки стали послужили основой для разработки теории термической обработки и построения диаграммы железо — углерод, а проведенные им многочисленные экспериментальные работы имели значение практических рекомендаций, применяемых в производстве до настоящего времени.  [c.144]

Карбид кремния (карборунд) i — соединение кремния с углеродом. Плотность 3,12—3,2 г/сж микротвердость 2900— 3500 кГ мм абразивная способность (по алмазу) 0,25—0,45. Подразделяют на зеленый КЗ с повышенной абразивной способностью и черный КЧ, применяемый для шлифования чугуна, алюминия, латуни и других вязких сплавов.  [c.266]

Карбид кремния — химическое соединение кремния с углеродом — обладает большей твердостью и хрупкостью, чем электрокорунд. Карбид кремния бывает зеленый (КЗ), имеющий цвет от светло- до темно-зеленого, и черный (КЧ) — обычного черного и темно-синего цвета.  [c.282]

Черный излом — включение свободного графита (углерода отжига) в углеродистой стали  [c.137]

Тепловое излучение пламени на указанных пяти участках спектра длин волн связано лишь с излучением твердых частиц сажистого углерода (/хс). Для сравнения на каждом из графиков приведена кривая спектрального распределения интенсивности излучения абсолютно черного тела при температуре пламени I o-  [c.122]

С увеличением температуры пламени спектральный состав излучения обогащается коротковолновыми составляющими, а максимум спектральной интенсивности излучения частиц сажистого углерода Хас смещается в сторону коротких длин волн по сравнению с максимумом спектральной интенсивности излучения абсолютно черного тела ко при температуре пламени. В среднем при температурах промышленных пламен это смещение составляет примерно 0,25 мк. Оно связано с характерной для малых частиц (р<С1) зависимостью коэффициента ослабления лучей ki от параметра дифракции р  [c.125]


Из полученного неравенства следует, что максимум спектральной интенсивности излучения малых частиц, в данном случае частиц сажистого углерода, должен быть смещен в сторону коротких длин волн по сравнению с максимумом спектральной интенсивности излучения абсолютно черного тела при температуре частиц.  [c.126]

На рис. 5-32 приведены данные, показывающие изменение оптической толщины потока частиц углерода больших размеров в зависимости от произведения il. Эти данные были получены на основании измерений спектральной и полной пропускаемостей запыленных потоков, не содержавших частиц углерода размерами менее 40 мк. В качестве источника излучения использовалось абсолютно черное тело при температурах от 700 до 1500° К.  [c.172]

Одним из важнейших преимуществ методики является ограниченный объем отбираемых газов, что позволяет при малых -размерах фильтра получить необходимую пробу за 15 мин. Описанный метод особенно перспективен при определении содержания горючих в золе и отложениях, имеющих легко возгоняемые неорганические компоненты. Известно, например, что отложения, взятые из газоходов мазутных парогенераторов, теряют при прокаливании до 40% своего веса. Так как они к тому же имеют черный цвет, это нередко служило поводом ошибочно считать убыль веса сгоревшим углеродом.  [c.283]

В этой работе Чернов впервые указал на существование в стали критических точек и на зависимость их положения от содержания углерода. Другими словами, Чернов дал первое прд0ставле1ние о диаграмме железо—углерод.  [c.159]

Рис. 365. Склонность к межкристаллитной коррозии аустенитных хромоникелевых сталей с разным содержаипе% углерода и никеля (автор) а —9% Ni й—19% Ni, Светлые точки — но склонны к МКК черные точки — склонны к МКК наполовину зачерненные — мало склонные Рис. 365. Склонность к <a href="/info/1556">межкристаллитной коррозии</a> аустенитных <a href="/info/36275">хромоникелевых сталей</a> с разным содержаипе% углерода и никеля (автор) а —9% Ni й—19% Ni, Светлые точки — но склонны к МКК черные точки — склонны к МКК наполовину зачерненные — мало склонные
После выгорания водорода в ядре начинается горение водорода в окружающем ядро слое, а затем последовательное горение гелия, углерода и других эле ментов. На этих стадиях происходит увеличение размеров и светимости звезды, в результате чего она перемещается по диаграмме Герцшпрунга — Рессела вправо и вверх. В области красных гигантов находятся звезды со слоевым источником энергии. На горизонтальную ветвь попадают звезды умеренных масс (около Mq), в ядре которых горит гелий. На поздних стадиях эволюции звезды интенсивно теряют массу. После истощения всех источников термоядерной энергии звездный остаток в зависимости от его массы превращается в белый карлик, нейтронную звезду или черную дыру.  [c.1209]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

Обобщены результаты последних исследовании по извлечению титана из руд и его применению в черной металлургии. Описаны фи-эико-химические свойства титана и его соединений с элементами-восстановителями и элементами, входящими в состав тит.ансодержа-щих сталей. Приведены сведения о титансодержащих рудах и методах получения титановых концентратов. Рассмотрены особенности восстановления титана алюминием, углеродом и другими элементами, показатели качества и способы получения титана, ферротитана и других легирующих титансодержащих сплавов.  [c.44]

Примем широко распространенную (но не единствей-но возможную) модель, согласно которой в этом мартенсите атомы углерода занимают только октаэдрические междоузлия ОЦК решетки железа. Среди них, как было выяснено выше, можно выделить три ОЦК подрешетки со своими направлениями оси тетрагональности. Для подрешетки, ось тетрагональности с которой параллельна направлению [001], междоузлия находятся в положениях, отмеченных черными кружками на рис. 45, а. В случав, когда весь зчлерод расположен только в одной такой шод-решетке, сплав находится в наиболее упорядоченном состоянии и имеет наибольшую степень тетрагональности. Если же атомы углерода поровну распределены между тремя подрешетками — он вполне неупорядочен и имеет кубическую решетку. Между этими крайними случаями возможны различные частично упорядоченные состояния ).  [c.185]

На рис. 3 приведена схема классификации способов покрытий черных металлов и сплавов насыщением химическими элементами. Необходимо иметь в виду, что при получении комплексных покрытий применяют различные варианты насыщения как отдельными элементами в любой последовательности, так и одновременно несколькими элементами. Например, двухкомпонентное покрытие 6о-ром и углеродом можно получить цементацией с последующим бо-рированием (карбоборированием), борированием с последующей цементацией (бороцементация) и одновременным насыщением углеродом и бором.  [c.37]


Проведенные исследования позволяют сделать некоторые предположения относительно механизма реакции. Параболический закон графитизации предполагает наличие диффузионных стадий процесса. Вероятно, в первую очередь графитизируются поверхностные дефектные и изолированные атомы углерода, они группируются в ароматические кольца, причем последние их связи с находящимся под ними слоем атомов разрываются. Благодаря диффузии ароматических колец в поверхностных слоях и их сращиванию, возникает черный графитоподобный углерод.  [c.112]

В сообщении Русскому техническому обществу и в ряде последующих работ Чернов подробно останавливается на пороках стальных слит1К01в, уделяя наибольшее внимание причинам и механизму возникновения газовых пузырей и усадочной рыхлости. Одновременно он предлагает нрактичесние мероприятия для устранения этих недостатков. Важнейшим из них является наиболее полное раскисление металла перед разливкой его в изложницы. В 70-е годы было известно два раскислителя жидкой стали — кремний и марганец. Именно они обеспечивают восстановление растворенной в сплаве закиси железа, предотвращают возникновение газообразной окиси углерода, приводящей 1к образованию пузырей в слитке стали. Наиболее энергичным раскислителем является кремний. Однако кремний окисляется (выгорает) в самом начале  [c.85]

Чернов, широко используя данные зарубежной и отечественной практики, в том числе и своих личных экспериментов на конверторах Обуховского завода, но-знакомил присутствующих с устройством конверторов и сущностью бессемеровского процесса. Он четко разделил последний на четыре перпода, подробно охарактеризовав наступление и окончание каждого из них. Основная трудность конверторного производства стали состояла в определении момента окончания процесса, протекающего с большой скоростью. Даже с помощью самых быстрых для того времени химических способов анализа металла невозможно было уследить за процессом выгорания кремния, марганца, углерода и других элементов, составляющих сталь.  [c.91]

Серия научных обзоров под общим названием Новейшие металлургические исследования — это не компиляция из различных источников, а обобщающий труд с ясными выводами автора, с его особыми мнениями и оценками того, что делается в России и за рубежом в области производства черных металлов . Уже в первой статье молодой ученый доказывает экономическую эффективность работы металлургических печей не на твердом топливе — коксе или древесном угле, а на горючих газах, для добывания ко торых можно употреблять такие материалы, которые негодны для большой части заводских производств плохой торф, мелкий каменный уголь, сосновую кору, шишки, бурый уголь, горючие сланцы и т. п.... Для стран, богатых лесом и каменным углем, вое-таки выгодно не употреблять их прямо на топливо, а превращать сперва в горючие газы или чрез неполное сожигание в особых генераторах (где главным образом происходит окись углерода), или даже чрез разложение в ретортах (где происходят углеро-  [c.102]

Сажа — тонкий, мягкий сильномажущий черный порошок, являющийся почти чистым углеродом. По методу получения подразделяют на сажу газовую (ГОСТ 7848—55) и сажу нефтяную (ТУ 867—41). Для изготовления черных и серых эмалей применяют преимущественно газовую сажу, имеющую наибольшую интенсивность цвета и хорошую укрывистость. Сажа обладает хорошей атмо-сферо- и светостойкостью. Удельный вес 1,65—2,00.  [c.204]

Карбид бора — соединение бора с углеродом. Плотная сплавленная масса с раковистым изломом серовато-черного цвета. Плотность 2,5 г/см микротвердость 4000— 4250 кПмм . При дроблении образуются  [c.265]

Металлический лом. Вторичные черные металлы, предназначенные для использования в качестве металлической шихты при выплавке стали и литейного чугуна и других целей, согласно ГОСТ 2787—75 иодразделяются 1) ио содержанию углерода —на два класса а) стальной лом и отходы и б) чугунный лом и отходы 2) по наличию легирующих элементов на две категории А — углеродистые, Б — легированные по показателям качества — на 28 видов по содержанию легируюгцих элементов — на 67 групп. В соответствии с этой классификацией в ГОСТ 2787—7.5 разработаны шифры для всех видов лома.  [c.117]

Карбид бора В4С — химическое соединенпе бора с углеродом — плотная сплавленная масса с раковистым изломом серовато-черного цвета. При дроблении образуются зерна с острыми кромками, поставляемые по ГОСТ 5744—74. По твердости и абразивной способности карбид бора превосходит все абразивные материалы, за цсключенпелМ алмаза и КНБ.  [c.383]

Карбид кремния Si (ОСТ 2-114—71)—соединение кремния с углеродом. Подразделяют на зеленый с повышенной абразивной способностью и черный, нрпмеияемып для шлифования чугуна, латуни, алюминия, пластмасс.  [c.384]

Микроструктура. Отливки из обезуглеро-женного ковкого чугуна имеют излом блестяще-белого или матово-серого цвета в отличие от черного в графттизирозанном ферритном ковком чугуне. Микроструктура обез-углероженного ковкого чугуна весьма резко изменяется от периферии к центру отливок, в особенности при большой толщине их. Структура обезуглероженного чугуна перлитно-ферритная, а при более высоком содержании связанного углерода может быть чисто перлитной. В качественных отливках из обезуглероженного ковкого чугуна перлит должен быть мелкослойным. При недостаточно полной декарбюризации образуется в сердцевине отливок перлитно-цементитная структура. При значительном количестве свободного цементита металл весьма твёрд и хрупок. Чем ближе к поверхности, тем количество углерода меньше, и в структуре получается преобладание феррита. У наружной поверхности структура обычно чисто ферритная.  [c.77]

В 1868 г. выдаюш ийся русский металлург Д. К. Чернов установил зависимость структуры и свойств стали от ее горячей механической (ковка) и термической обработки. Чернов открыл критические температуры, при которых в стали в результате ее нагревания или охлаждения в твердом состоянии происходят фазовые превращения, существенно изменяющие структуру и свойства металла. Эти критические температуры, определенные по цветам каления металла, получили название точек Чернова. Русский ученый графически изобразил влияние углерода на положение критических точек, создав первый набросок очертания важнейших линий классической диаграммы состояния железо—углерод. Исследования полиморфизма железа, завершенные Д. К. Черновым в 1868 г., принято считать началом нового периода в развитии науки о металле, возникновением современного металловедения, изучающего взаимосвязь состава, структуры и свойств металлов и сплавов, а также их изменения при различных видах теплового, химического и механического воздействий.  [c.136]

На рубеже XIX—XX вв. многие видные ученые-металлурги и металловеды В. Робертс-Аустен (Англия), В. Розебом (Голландия), Ф. Осмонд (Франция), П. Герене (Германия) и другие положили немало труда для дальнейшей разработки диаграммы железо—углерод, которая является основой современной металлографии черных металлов.  [c.136]

Углерод С (СагЬопшш). Распространенность в земной коре 0,14%. В свободном состоянии встречается в виде двух модификаций алмаза и графита. Алмаз бесцветен, прозрачен он является самым твердым из природных веществ. Возгоняется при температуре выше 2500° С плотность 3,51. Графит образует тонкочешуйчатые агрегаты от железочер -ного до стально-черного цвета, мягок. Возгоняется при температуре выше 3500° С плотность 2,25.  [c.376]

Наклон печи для выпуска металла осуществляется поворотным механизмом с гидравлическим или электрическим приводом. Возможность нагревать металл до высоких температур позволяет получать в этих печах сплавы, соде.ржащие в составе тугоплавкие компоненты, плавить серебро, платину и золото. В указанных печах можно выплавлять сталь с малым содержанием углерода, магнитные и другие специальные сплавы из черных и цветных металлов.  [c.161]



Смотреть страницы где упоминается термин Черный углерод : [c.213]    [c.216]    [c.129]    [c.253]    [c.53]    [c.118]    [c.317]   
Техническая энциклопедия том 24 (1933) -- [ c.422 ]



ПОИСК



Углерод

Углерод— углерод

Черный



© 2025 Mash-xxl.info Реклама на сайте