Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Граница зерен, образование

Механизм влияния стабилизирующей полигонизации заключается, видимо, в том, что полигонизация уменьшает дальнодействие упругих полей дислокационных сеток. Вследствие этого ослабевает способность дислокаций оттягивать на себя границы зерен. Образование же  [c.334]

В настоящее время эти сведения весьма противоречивы часто термоусталостному разрушению приписывают черты длительного статического (развитие трещин по границам, поверхностное растрескивание на небольшую глубину), однако выше были приведены примеры развития трещин по закономерностям механической усталости. Разрушение при термоусталости не может быть охарактеризовано однозначно как усталостное или статическое оно может быть тем или иным, либо смешанным в зависимости от величины и соотношения трех основных факторов максимальной температуры цикла, амплитуды деформации и длительности цикла (выдержки на максимальной температуре). Именно эти факторы определяют основные изменения в структуре материала, относящиеся к состоянию границ зерен, количеству и виду упрочняющих фаз и их изменению во времени, характеру дислокаций, их торможению на границах зерен, образованию вакансий и т. д.  [c.97]


Было установлено, что структурные несовершенства, вызванные облучением, оказывают сильное влияние на скорость окисления, причем наиболее интенсивно реакция протекает вблизи пор и по границам зерен. Образование межузельных атомов в кристаллической решетке, как полагают в работах [127, 216], способствует реакции окисления, однако единая то ка зрения на это отсутствует. Противоречивость литературных данных не позволяет представить весь процесс взаимодействия графита с газовым потоком в целом и тем более судить о реакции окисления графита в нейтронном поле. На каталитическое действие структурных дефектов, вызванных облучением нейтронами и способствующих окислению, указано в работе [200]. В предварительно облученном реакторном графите скорость окисления возрастает в шесть раз по сравнению с необлученным материалом.  [c.208]

Проблема сохранения наноструктуры бьша предметом многостороннего рассмотрения. Считается, что наличие нано- и микро-пор (см. рис. 3.32), пограничные сегрегации, двух- или многофазные наноструктуры, уменьшение поверхностной энергии на границах зерен, образование пересыщенных твердых растворов, со-  [c.99]

Представления о неравновесных границах были введены в научную литературу в 1980-х годах [4], базируясь на исследованиях взаимодействия решеточных дислокации и границ зерен. Образование неравновесного состояния границ зерен характеризуется двумя основными особенностями — избыточной энергией границ зерен (при  [c.21]

То же Образование питтинга и легкое травление границ зерен Образование питтинга и интенсивное растравливание границ зерен  [c.127]

Выделение фаз при распаде твердых растворов 109—111 Градиент температуры 32 Граница зерен, образование 113, 114  [c.523]

В первом случае распад начинается при температуре вблизи точки 1 (для сплава /). Кристаллы ip-фазы образуются преимущественно на границах зерен, так как работа образования центра кристаллизации на границе зерна меньше, чем внутри зерна. Критический размер зародыша должен быть относительно большим, так как переохлаждение мало. Дальнейшее охлаждение должно привести к выделению новых кристаллов и к росту выделившихся. Образующиеся кристаллы р-фа-зы не имеют определенной ориентации относительно исходной а-фазы, а внешняя форма их приближается к сфероиду, так как эта форма обладает минимумом свободной энергии. Кристаллы растут постепенно, атомы преодолевают энергетический барьер и на границе раздела а- и р-фаз один за другим встраиваются Б решетку выделяющейся фазы.  [c.142]


Влияние серы. Сера является вредной примесью. Она образует легкоплавкую эвтектику FeS -f Fe. При кристаллизации сплава легкоплавкая эвтектика располагается по границам зерен и при повторном нагреве расплавляется, в результате чего нарушается связь между зернами, что приводит к образованию трещин и надрывов. Это явление носит название красноломкости. Допускается содержание серы до 0,06 %.  [c.14]

Зона термического влияния (з. т. в.) представляет собой участок сварного соединения, прилегающий к шву, в котором под действием нагрева происходят структурные изменения укрупняется зерно, оплавляются границы зерен, в сплавах с полиморфными превращениями возможно образование микроструктуры закалочного типа. В результате этих изменений возможно резкое повышение твердости и снижение пластичности (рис. 5.47).  [c.229]

Наиболее трудно свариваются термически упрочняемые сплавы системы А1—Си—Mg (дуралюмины). При нагреве свыше 500 °С происходит оплавление границ зерен с образованием на расплавленных участках эвтектических выделений. После затвердевания эвтектика имеет пониженные механические свойства, что приводит к охрупчиванию 3. т. в. и снижению ее прочности по сравнению с прочностью основного металла. Свойства з. т, в, не восстанавливаются термической обработкой.  [c.236]

Протекание третьего процесса — внутреннего окисления сплава — приводит к образованию под окалиной зоны, содержащей окислы легирующего элемента. Последние располагаются при относительно высоких температурах достаточно равномерно, а при более низких температурах — преимущественно по границам зерен, что приводит к снижению прочности и пластичности металла (рис. 105). Для глубины диффузионной межкристаллитной зоны Лгр справедливо следующее уравнение  [c.146]

Посторонние примеси имеют тенденцию собираться у линейных дислокаций и дырок по границам зерен. Роль этих сегрегаций в процессе электрохимической коррозии металлов может быть различной увеличение растворимости металла, облегчение образования питтингов в местах скопления дислокаций (субграницах), изменение характера коррозионного разрушения.  [c.327]

Поясним роль структурного элемента (зерна или блока) при анализе накопления повреждений в материале. Ранее (см. раздел 2.3) было отмечено, что одним из основным механизмов, образования микротрещин является скопление дислокаций у препятствий (барьеров), которыми в большинстве случаев являются границы зерен, блоков и фрагментов, сформировавшихся в процессе деформирования материала. Если размер обратимой упругопластической зоны меньше диаметра зерна dg, плоские скопления дислокаций не доходят до границ зерен, поэтому здесь не создается необходимая для зарождения микротрещин концентрация напряжений. С другой стороны, в теле зерна отсутствуют барьеры дислокационного происхождения, которые могут служить стопорами для скопления дислокаций. Значит,  [c.213]

В работах [232, 234, 356] показано, что для некоторых материалов характеристики вязкости разрушения при циклическом нагружении могут существенно отличаться от характеристик статической трещиностойкости. Циклическое деформирование металла у вершины трещины приводит к нестабильному (скачкообразному) ее развитию при КИН, меньших статической вязкости разрушения Ки. В настоящее время феноменология такого явления достаточно хорошо разработана и описана в работах [29, 197, 232, 234, 267, 356]. Тем не менее физическая природа скачков усталостной трещины изучена недостаточно. Попытаемся дать физическую интерпретацию этого явления. Выше (см. подраздел 2.3.2) была представлена модель, описывающая зарождение усталостного разрушения в масштабе зерна. Разрушение представлялось как многостадийный процесс, включающий зарождение микротрещин по границам и в теле фрагментированной субструктуры, возникающей при циклическом деформировании, стабильный рост микротрещин за счет стока дислокаций в их вершины, образование разрушения в пределах зерна при нестабильном росте микротрещин. Ограничение мае-штаба разрушения при нестабильном росте микротрещин размером зерна возникает в случае их торможения границами зерен или стенками фрагментированной структуры, т. е. при = Oi < 5с(ху), где X/ — накопленная деформация к моменту страгивания микротрещин. Если сгтах 5с(ху), то разрушение может распространяться в масштабе, большем чем размер зерна.  [c.222]


При нагреве образцов из жаропрочного сплава ЭП648 без покрытия обнаружен слой глубиной до 120—150 мк от поверхности с измененным химическим составом содержание хрома в поверхности образцов уменьшилось на 5—7%, образовалась окалина состава МоаОз, МеО и МоаОз (рис. 3). Отмечено повышение содержания алюминия по границам зерен, образование окисла этого элемента. После нагрева образцов с защитным покрытием при температуре 1100° С явления межкристаллитной коррозии отсутствуют, распределение элементов в сплаве равномерное.  [c.166]

Покрытия с первичными взаимодействующими фазами рост межчастичных контактов частиц твердой фазы в присутствии жидкшй фазы, перекондеисация дисперсной твердой фазы через жидкую фазу, уплотнение за счет аккомодации границ зерен, образование каркаса, реологические свойства таких систем.  [c.33]

Хром, марганец и цирконий образуют интерметаллиды, которые являются нерастворимыми при температуре под закалку. Эти частицы закрепляют границы зерен, таким образом предотвращая рекристаллизацию и частично сохраняя удлиненными границы зерен, образованные при штамповке, прессовании и прокатке. Эти соде зжащие хром и марганец частицы можно видеть на рис. 105. Без таких добавок сплавы серии 7000 имеют рекристаллизован-ную с равноосным зерном структуру и предельно низким сопротивлением КР- Структура с равноосным зерном высокочистого тройного сплава А1—Мд—2п показана на рис. 106. Для сравнения структура промышленного сплава серии 7000 с удлиненным зерном представлена на рис. 3 и 4. На тройных сплавах с рекристал-лизованной структурой наблюдаются самые высокие скорости  [c.252]

Применение ингибитора С-5 на ЧерМЗ для травления электротехнических сталей на НТА позволило снизить расход H2SO4 на 1,02 кг/т, уменьшить выход железного купороса на 2,5 кг/т, что соответствует экономии металла 0,59 кг/т [168 . При этом исключается растравливание по границам зерен, образование Шлама.  [c.105]

Фазовое а у-нревращение в железе сопровождается такими изменениями объема, которые вызывают механические напряжения, достаточные для пластической деформации образцов. Металлографическое исследование монокристаллов очищенного в водороде армко-железа показало, что эта деформация действительно протекает, причем ее признаки очень схожи с признаками высокотемпературной ползучести (внутризеренное скольжение, скольжение по границам зерен, образование субзерен) [53]. Анализ деформации образца железа, подвергнутого циклической термо-  [c.451]

При разрушении по границам зерен образование свободной поверхности сопровождается уменьшением поверхностй границ, и с учетом этого поверхностная плотность энергии межзеренного сцепления равна [134]  [c.112]

Все коррозионно-стойкие аустенитные хромоникелевые стали являются одновременно и жаропрочными и иногда применяются для изготовления изделий, работающих в химически активных средах при повышенных температурах. Нагрев таких сталей способствует стабилизации их фазового состояния, а при наличии углерода и хрома — выделению из твердого раствора карбидов хрома (стали 08Х18Н10, 10Х23Н12 и др.). Выделение этих карбидов происходит в энергетически наиболее благоприятных участках — по границам зерен. Образование карбидов по границам зерен приводит к тому, что на границах вследствие появления второй фазы увеличивается склонность к электрохимической коррозии. Кроме того, на образование карбида с приграничных участков зерна хром уходит, приграничная область обедняется, ее коррозионная стойкость снижается. Процесс карбидообразования на границах зерен повышает в этих зернах уровень микронапряжений.  [c.262]

Если сталь, в которой не произошло выпадения карбидов и углерод зафиксирован в твердом растворе, медленно нагревать, подвнжг[ость атомов увеличивается. В соответствии с этим увеличивается и способность их к диффузии и восстановлению равновесия в твердом растворе, в котором аустенит зафиксирован в пересыщенном и неустойчивом состоянии, что приводит к образованию и выделению карбидов из пересыщенного твердого раствора. Этот процесс начинается при температуре 400 — 500° С, но вследствие малой скорости диффузии идет медленно с образованием карбидов преимущественно по границам зерен.  [c.283]

Слияние зерен не требует для своего осуществления значительных диффузионных процессов, и, главное, процесс слияния может происходить одновременно по всем (или многим) поверхностям межзеренного раздела, Межзерен-кые границы являются, как об этом уже говорилось, сосредоточением различных дефектов, дислокаций, в первую очередь. Аннигиляция этих дефектов по сути дела есть уничтожение границ зерен. Следовательно, процесс роста зерен путем слияния происходит при более низкой температуре, чем роет зереи путем миграции и, как показывает пр п тика, приводит к образованию очень крупных зерен.  [c.93]

Для фиксирования положения границ аустенитного зерна [фименяют разные способы, например замедленное охлаждение, способствующее выделению по этим границам избыточных фаз (феррита, цементита и др.) длительный нагрев, вызывающий проникновение кислорода вглубь по границам зерен, м образование сетки из окислов, специальные методы травления мартенсита травление в вакууме ири высокой температуре,, при которой растравливаются лишь границы.  [c.240]

Благоприятное влияние небольших добавок молибдена (до 0,5—0,6%), тормозящих и даже иногда устраняющих отпускную хрупкость II рода, объясняется тем, что молибден слабо участвует в образовании легированною цементита (Fe, Мо)зС и при таких содержаниях не образует специальных карбидов. Поэтому обеднения приграничных участков зерен молибденом не происходит. Присутствие же молибдена в растворе уменьшает разницу в диффузионной подвижности атомов по границам н в об1>еме з(. рна и тем самым ослабляет возникновение неоднородности по другим карбидообразующим элементам. Вместе с тем молибден устрапж т вредное влияние фосфора по границам зерен.  [c.376]


Явление пнтеркристаллитной коррозин связано с понижением коррозионной стойкости границ зерен, вследствие того, что в образовании карбидной фазы (А/азСб) на границах зерен участвует практически весь углерод (усме-  [c.488]

Коррозионная стойкость стали обеспечивается содержанием более 12 % Сг, а содержание 8 % Ni стабилизирует аустенит-ную структуру и сохраняет ее при нормальных температурах(сталь 10Х18Н9Т и др.). При сварке этих сталей на режимах, обусловливающих продолжительное пребывание металла в области температур 500—800 °С, возможна потеря коррозионной стойкости металлом шва и 3. т. в. Причиной этого является образование карбидов хрома на границах зерен и обеднение приграничных участков зерен хромом. В результате металл сварного соединения становится склонным к так называемой межкристаллитной коррозии.  [c.233]

Легкая окисляемость Си в расплавленном состоянии приводит к образованию ujO, хорошо растворяющейся в жидкой Си, давая легкоплавкую эвтектику, которая, располагаясь по границам зерен, снижает стойкость металла шва против кристаллизационных трещин. Высокая теплопроводность Си вызывает необходимость применения концентрированных источников нагрева и часто подогрева.  [c.114]

Напряжения, возникающие на границах зерен при образовании карбидов, способствуют уменьшению коррозионной стойкости границ зерен, но для сталей типа Х18Н9 с содержанием углерода, превышающим предел растворимости хромистых и железохромистых карбидов й аустените при температуре отпуска, играют, по-видимому, подчиненную роль.  [c.423]

Рассмотрим принципиальную возможность моделирования влияния пластического деформирования на 5с, исходя из увеличения сопротивления распространению микротрещины в результате эволюции структуры материала в процессе нагружения. Можно предположить, по крайней мере, две возможные причины увеличения сопротивления распространению трещин скола в деформированной структуре. Первая — это образование внут-ризеренной субструктуры, играющей роль дополнительных барьеров (помимо границ зерен), способных тормозить мнкро-трещину. Наиболее общим для широкого класса металлов структурным процессом, происходящим в материале при пластическом деформировании, является возникновение ячеистой, а затем с ростом деформации — фрагментированной структуры [211, 242, 255, 307, 320, 337, 344, 348, 357, 358]. Второй возможный механизм дополнительного торможения микротрещин — увеличение разориеитировок границ, исходно существующих взернз структурных составляющих (например, перлитных колоний). Первый механизм, по всей вероятности, может действовать в чистых ОЦК металлах с простой однофазной структурой. Второй, как можно предполагать,— в конструкционных сталях.  [c.77]

Будем рассматривать межзеренное разрушение материала, происходящее путем накопления кавитационяых повреждений. На основе имеющихся экспериментальных данных [199, 240, 256, 304—306, 334, 341, 392, 394] следует принять, что развитие указанных повреждений определяется непрерывным зарождением и ростом пор по границам зерен в процессе деформирования материала. Образование макроразрушения (разрушения в масштабе, большем либо порядка размера зерна поликристал-лического материала) обусловлено объеединением микропор. В качестве критерия объединения пор, т. е. критерия образования макроразрушения, будем использовать критерий, основан-  [c.155]

Как следует из рис. 3.5, при одной и той же скорости деформирования критическая деформация ef, соответствующая разрушению в агрессивной среде, меньше, чем Zf в инертной среде. Такой эффект может быть обусловлен либо увеличением интенсивности развития повреждений в агрессивной среде, либо снижением критической повреждаемости материала, а также совместным действием этих факторов. В работе [424] предложена модель, базирующаяся на предположении, что реагент среды, диффундируя к границам зерен, снижает их когезивную прочность и тем самым уменьшает критическую повреждаемость материала, отвечающую моменту образования макроразрушения. При этом темп развития межзеренных повреждений принимается инвариантным к среде. Наблюдаемое в опыте увеличение скорости ползучести в агрессивной среде по сравнению с на воздухе в работе [424] не нашло объяснения.  [c.167]

Второй возможный механизм развития трещины базируется на следующих представлениях. После объединения микротрещины с макротрещиной идет непрерывное динамическое развитие макротрещины по тем же законам, по которым развивалась и микротрещина отсутствие заметного пластического деформирования у верщины быстро развивающейся трещины (недостаточно времени на реализацию релаксационных процессов в вершине) рост трещины по плоскостям спайности с преодолением различных барьеров типа границ зерен, фрагментов, блоков (см. раздел 2.1). При реализации второго механизма энергия, необходимая для старта трещины, будет отличаться от энергии, идущей на ее рост. Энергия зарождения хрупкого разрушения обусловлена пластическим деформированием, необходимым как для зарождения микротрещин, так и для реализации деформационного упрочнения, обеспечивающего рост напряжений до величины S . Для распространения трещины от одного зерна к другому необходима эффективная энергия не только для образования новых поверхностей, но и для компенсации дополнительной работы разрушения, идущей на образование ступенек и вязких перемычек при распространении трещин скола [121, 327]. Образование ступенек на поверхности скола, как известно, связано с различной ориентацией зерен. При переходе трещины скола через границу зерна в новом зерне из-за различий в ориентации происходит разделение трещины на ряд отдельных трещин, которые распространяются параллельно по кристаллографическим плоскостям спайности и прп объединении образуют ступеньки скола. При распространении макротрещины через отдельные неблагоприятно расположенные зерна, для которых плоскости спайности сильно отклонены от направления магистральной трещины, могут наблюдаться вязкие ямочные дорывы (перемычки) [114, 327]. Учитывая, что для старта макротрещины требуется пластическое деформирование, по крайней мере в масштабе, не меньшем, чем диаметр зерна, а для ее развития масштаб пластического деформирования ограничен размером перемычек между микротрещинами, можно заключить энергия G , необходимая для старта трещины, выше, чем энергия ур, требующаяся на ее развитие. Эксперименты для большинства конструкционных металлических материалов подтверждают сделанное заключение [253]. Следовательно, динамическое развитие трещины при хрупком разрушении наиболее вероятно происходит по второму механизму. Кроме того, в пользу второго механизма говорят имеющиеся фрактографические наблюдения (рис. 4.19), которые иллюстрируют переход трещины скола через границу зерна со значительной составляющей кручения и расщепление зерна рядом параллельных друг другу трещин. Если бы развитие трещины  [c.240]


Смотреть страницы где упоминается термин Граница зерен, образование : [c.14]    [c.119]    [c.285]    [c.345]    [c.385]    [c.471]    [c.483]    [c.608]    [c.99]    [c.331]    [c.333]    [c.422]    [c.61]    [c.139]    [c.156]    [c.149]   
Сварка и свариваемые материалы Том 1 (1991) -- [ c.113 , c.114 ]



ПОИСК



Границы зерен

Зерно

Образование зерен



© 2025 Mash-xxl.info Реклама на сайте