Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коши поверхность деформаций напряжений

Коши поверхность деформаций >39 --напряжений 22  [c.374]

Одновременно с Навье и Пуассоном уравнениями равновесия упругого тела занимался и Коши. Но исследования Коши по своему методу существенно отличаются- от исследований Навье и Пуассона. В работах Коши последовательно используются понятия напряжения и относительных деформаций, представления о поверхности напряжений и поверхности деформаций, представления о главных напряжениях и главных относительных удлинениях и основная гипотеза  [c.18]


Подобно тому, как строится гиперболоид напряжений, являющийся поверхностью Коши для девиатора напряжений, можно построить поверхность деформаций для девиатора деформаций (D ). Эта поверхность по аналогии с (1.46) имеет уравнение  [c.44]

Полученные после интегрирования шесть составляющих напряжений должны удовлетворять условиям на поверхности (4.2). После этого по формулам закона Гука (4.5) определяют составляющие деформации, а из формул Коши (4.3)—составляющие перемещения.  [c.47]

При этих предположениях основные уравнения плоской деформации дифференциальные уравнения равновесия (5.2), условия на поверхности (5.3), формулы Коши (5.4) и уравнение сплошности (5.5) сохранят такой же вид и в задаче об обобщенном плоском напряженном состоянии, а формулы закона Гука (4.5) примут следующий вид  [c.54]

Основные уравнения обобщенного плоского напряженного состояния. Дифференциальные уравнения равновесия и условия равновесия на поверхности— те же, что и в случае плоской деформации, т. е. (9.87) и (9.88). Из шести соотношений Коши сохраним лишь интересующие нас три уравнения (9.89). Три других нас не интересуют, так как величины е , Уг/г и у х не рассматриваются.  [c.661]

Очевидно, что формула (2.90) с точностью до обозначений совпадает с (2.48), и геометрическая интерпретация выражения (2.90) может быть проведена аналогично проделанной относительно тензора малой деформации. В данном случае уравнение центральной поверхности второго порядка называется поверхностью напряжений Коши и имеет вид  [c.62]

Поверхность (2.30) вполне аналогична поверхности напряжений Коши <1.23), обладает такими же свойствами и носит название поверх-ности деформации. Она является центральной поверхностью второго порядка, с центром в исследуемой точке и может быть или эллипсоидом, или совокупностью однополостного и двухполостного гиперболоидов с общим асимптотическим конусом. Если из центра е будем строить радиусы-векторы р до пересечения с поверхностью, то из (2.29) будем иметь  [c.58]

Симметричные относительно срединной поверхности колебания пластины в случае плоской деформации были рассмотрены еще Коши [2.78] (1828). Он, исходя из метода степенных рядов, показал, что уравнения обобщенного плоского напряженного состояния вытекают из задачи динамической теории упругости как их простейшее приближение.  [c.171]


В деформируемом твердом теле малые колебания описываются уравнениями движения pдtдtUj = д (7ij. На поверхностях разрыва (недифференцируемости) свойств среды к ним надо присоединить условия сопряжения, а на граничных поверхностях — граничные условия. При совершенном механическом контакте условия сопряжения на поверхностях разрыва заключаются в непрерывности перемещений и соответствующих напряжений. Для упругих материалов уравнения движения замыкаются материальными соотношениями = = Сг ,тп( т п + п/ т)/2, В которых учтены формулы Коши ДЛЯ деформации.  [c.819]

Теперь можно составить план решения задачи теории упругости в перемещениях. Для отыскания трех составляющн перемещения ы, о и ш необходимо проинтегрировать три уравнения Ламе (4.8) и удовлетворить условиям на поверхности (4.9). По найденным перемещениям из формул Коши (4.3) определяют составляющие деформации, а затем из формул закона Гука (4.6)—составляющие напряжений.  [c.45]

В предыдущих главах были рассмотрены статические ус-"яовия (условия равновесия) внутри и на поверхности тела (уравнения (1.16), (1.18)), геометрические уравнения, устанавливающие связь между деформациями и перемещениями (уравнения Коши (1.19)) и между деформациями (условия неразрывности Сен-Венаиа (1.29)), и, наконец, физические уравнения, устанавливающие связь между напряжениями и деформациями в точке тела (обобщенный закон Гука, уравнения (2.8) и (2.10)). Составим сводку основных уравнений теории упругости.  [c.51]

Квадрика (поверхность) напряжений Коши 387, 41 1, 412, 460 — — деформаций Коши 460 Квазиизотропность поликристалла 231,  [c.823]

Сравнение функций отклика поликристаллического твердого тела при путях нагружения, соответствующих чистому растяжению и чистому кручению, осуществлялось многими исследователями, начиная с Харстона в XIX веке. Среди тех, кто выполнял такие сравнительные опыты в XX веке, был Е. А. Дэвис (1937 г.). Результаты экспериментов Дэвиса были представлены в форме зависимости между напряжением Коши (или напряжением, отнесенным к деформированной площади) и логарифмической (истинной) деформацией. Если результаты Дэвиса пересчитать в условные напряжения и деформации, то получится поверхность нагружения Максвелла — Мизеса с параболическими зависимостями напряжения — деформации, находящимися в хорошем количественном согласии с определяющими уравнениями, выведенными позднее для описания больших деформаций отожженных кристаллических тел (Bell [1968, 1], см. раздел 4.35).  [c.110]

К. Понятие усилий в продольных волокнах бруса, близкое по смыслу к нормальным напряжениям в его поперечных сечениях, использовалось уже в работах Г. Галилея. В дальнейшем это понятие развивалось в работах Ф. Мариотта (1620 1684), Парана (1666-1716), Ш. Кулона (1736-1806), Т. Юнга (1773-1829) также ирименительно к теории растяжения и изгиба бруса. В то же время Л. Навье подсчитывал силы взаимодействия отсеченных частей как суммы (интегралы) сил взаимодействия их частиц. Впервые в явном виде понятие напряжения, а значит, и предположение о том, что внутренние силы распределены по поверхности сечения, ввел один из крупнейших математиков и механиков XIX века О. Коши (1789-1857). Это понятие было высказано в основополагаюгцих работах но математической теории упругости, по опо быстро было использовано и в исследованиях прикладного характера, что придало, в частности, теории деформаций бруса современный вид.  [c.33]

Накопление опыта решения нелинейных задач при больших деформациях обязано применению полуобратного метода — метода, которым были достигнуты первые выдающиеся успехи и в линейной теории. На первом этапе процесса задаются предполагаемой формой осуществляемого преобразования R (г ( отсчетной неискаженной коифигурации в актуальную, содержащей подлежащие определению функции материальных координат, на втором —по этому заданию составляется выражение меры деформации, а по ней (из уравнения состояния материала) тензор напряжений (Коши Т или Пиола Р). Третий этап — по уравнениям равновесия в объеме и на поверхности находят распределения массовых н поверхностных сил, допускаемые предположенным заданием вектора места R. Требуется, чтобы так определяемые массовые силы соответствовали их заданиям, например, были постоянны (сила веса) или пропорциональны расстоянию от некоторой оси (центробежная сила). Чаще всего принимают к = 0, наперед предполагая, что напряженное состояние создается  [c.134]



Смотреть страницы где упоминается термин Коши поверхность деформаций напряжений : [c.44]    [c.60]   
Пластичность Ч.1 (1948) -- [ c.22 ]



ПОИСК



597 — Деформации и напряжения

Коши поверхность деформаций

Коши)

Напряжение поверхность напряжения

Поверхность деформаций

Поверхность напряжений

Поверхность напряжений Коши



© 2025 Mash-xxl.info Реклама на сайте