Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поле в активном резонаторе

Поле в активном резонаторе  [c.228]

ПОЛЕ В АКТИВНОМ РЕЗОНАТОРЕ 229  [c.229]

В данной главе основное внимание будет уделено пас-сивным резонаторам. Отдельно будут рассмотрены вопросы влияния активной среды на спектр генерации (эффекты выгорания дыр и затягивания частот) и на пространственную структуру поля излучения (эффект тепловой линзы), а также волноводные резонаторы и тонкопленочные лазеры. Подчеркнем, что вопросы формирования поля в активных резонаторах органически связаны с динамикой процессов в генерирующих лазерах. Это — большой и принципиально важный круг вопросов. Он будет рассматриваться в третьей главе книги.  [c.109]


В предыдущих параграфах, посвященных описанию принципа действия и конкретных схем лазеров, основное внимание концентрировалось на энергетической стороне дела, а именно, на методах образования достаточно большой инверсной заселенности и на усилении поля в активной среде. Существенную роль при этом играл резонатор, зеркала которого отражали падающий на них свет в активную среду и тем самым способствовали достижению порога генерации. Однако, помимо указанной функции, резонатор выполняет и другую — формирует пространственно когерентное и монохроматическое излучение.  [c.794]

В 6 мы рассмотрим, как меняется временная когерентность мод в активном резонаторе при введении энергии в поле излучения через спонтанное и вынужденное испускание.  [c.24]

Мы начнем обсуждение теории Лэмба с вывода волнового уравнения Максвелла в том виде, который соответствует описанию поля внутри активного резонатора (в этой главе мы будем пользоваться рационализованной системой единиц). Хорошо известно волновое уравнение для распространения в свободном  [c.228]

Лазерный резонатор — это активный резонатор. Однако при изучении процесса формирования поля излучения в лазерных резонаторах сначала рассматривают пассивные резонаторы. Большинство расчетных работ посвящено именно пассивным резонаторам. Это объясняется не только тем, что исследование активных резонаторов встречает серьезные трудности. Дело в том, что пассивный резонатор позволяет получить в первом приближении вполне реалистическую картину процессов формирования светового поля в лазерном резонаторе.  [c.106]

Наряду с эффектом насыщения усиления следует учитывать и другие факторы, влияющие на формирование поля излучения в активном резонаторе. Так, например, дисперсия показателя преломления активной среды может приводить к так называемому эффекту затягивания частот [10], проявляющемуся в нарушении эквидистантности спектра резонансных частот резонансные частоты более плотно группируются вблизи центра линии усиления. Нагревание активной среды при поглощении излучения накачки приводит к изменению ее показателя преломления. В результате возникает так называемый эффект тепловой линзы. активный элемент действует на излучение внутри резонатора подобно собирающей либо рассеивающей линзе (см., например, [11]).  [c.108]


Рассмотрим некоторые следствия, вытекающие из принципа цикличности. Амплитуда волны за счет усиления в активной среде за один цикл изменяется в ехр[а(о))А] раз, что должно компенсироваться выходом излучения из резонатора вследствие частичной прозрачности зеркал, дифракцией и потерями любого другого происхождения. Следовательно, применительно к амплитуде поля принцип цикличности требует выполнения равенства  [c.795]

Кратко обсудим нелинейные явления, приводящие к возникновению сверхкоротких импульсов в лазерах с поглощающим элементом внутри резонатора. Пусть создана инверсная заселенность уровней в активном элементе лазера и происходит усиление спонтанного излучения. Ввиду случайного характера актов спонтанного испускания амплитуда поля хаотически изменяется во времени и от точки к точке ) (рис. 40.20, а). Амплитуда поля имеет вид набора случайных по величине и случайно расположенных выбросов . На перво,VI этапе развития генерации, когда мощность излучения еще невелика, фильтр ослабляет все выбросы в равной мере. С течением времени все большее число атомов возбуждается, и энергия  [c.814]

Из-за инерционной нелинейности лазера компоненты поляризации С и 5 зависят от амплитуды электрического поля Е . Эта зависимость определяется механизмом создания инверсной населенности среды и характером уширения спектральной линии активного вещества. Если напряженность электрического поля в резонаторе невелика (лазер работает вблизи порога самовозбуждения), то в разложении С и по амплитудам поля можно ограничиться членами третьей степени, т. е.  [c.362]

Модулятор состоит из мощного соленоида 3 н активного стержня 2, установленных в оптический резонатор между торцом рубинового стержня и выходным зеркалом 4. При прохождении тока по обмотке соленоида возникает электромагнитное поле, изменяющее плоскость поляризации активного стержня. Степень поляризации модулятора определяет длительность светового луча.  [c.22]

Сделав предварительные замечания, перейдем теперь к рассмотрению ЛМ-синхронизации мод. Пусть g(w)—усиление по амплитуде (т. е. по электрическому полю) за один проход в активной среде в условиях насыщения. Предполагая, что время релаксации верхнего уровня много больше времени полного прохода резонатора, можно показать [2], что  [c.538]

По формуле (2.150) рассчитывается распространение поля по оси Z от одного зеркала к другому. В случае активного резонатора с (л, у, г) на каждом шаге расчета необходимо произвол  [c.118]

Пока. атель преломления активной среды 31, 52, 61, 222, 327 Поле в активном резонатор 228 Полиномы Лагорра 148, 151  [c.405]

В случае оптического квантового генератора зеркальный резонатор создает положительную обратную связь между полем излучения и источником его энергии — активной средой ). Зеркала резонатора обеспечивают многократное распространение (и тем самым усиление) светового потока в активной среде. Это необходимо и для самовозбуждения генерации, и для ее поддержания. Однако роль резонатора в работе лазера не исчерпывается повышением плотности энергии поля в активной среде. Согласно указанной выше аналогии, для возникновения автоколебательного режима обратная связь должна быть положительной. Другими словами, должна иметь место строгая сннфазность колебаний, уже существующих в системе и приходящих по каналу обратной связи. Подобные соображения применимы и к оптическим квантовым генераторам, о чем будет идти речь в 228, 229.  [c.783]

Пороговая мощность накачки непрерывного лазера. Пороговая мощность накачки, как уже отмечалось, обеспечивает равенство усиления и потерь света в лазере при круговом обходе резонатора (такое состояние называется порогом генерации лазера). Из этого условия легко найти выражение для пороговой мощности накачки. Для этого можно воспользоваться уравнением генерации одномодового лазера (2.1а), из которого определяется пороговая концентрация инверсной населенности активной среды Л пор и затем пороговая мощность накачки. Действительно, первый член уравнения в левой части (—wjx ) описывает затухание поля за счет потерь в резонаторе, а второй член D ni)Vg,wNусиление поля в активной среде с инверсией населенности ионов неодима, равной N. При некоторой пороговой инверсии Л пор оба члена сравниваются по абсолютной величине, производная dwjdt обращается в нуль и дальнейшее, даже малое повышение инверсии, обусловливая положительную производную энергии поля во времени, приводит к генерации света в лазере, т. е. пороговое значение концентрации инверсии населенности находится из (2.1а) при равенстве нулю производной dwjdt.  [c.58]


Основными факторами влияния неоднородных температурных полей в активных элементах твердотельных лазеров на формирование полей излучения в резонаторе и на выходные характеристики лазера являются термоиндуцированные неоднородности показателя преломления и оптической анизотропии среды. Для исследования этих искажений применяются классические интерференционные и поляризационные методы и приборы, в которых используются параллельные пучки лучей. Пропускание измерительных пучков через активные элементы в направлении оси резонатора дает возможность измерять именно те искажения (интегральные вдоль геометрических путей лучей в активном элементе), которые непосредственно характеризуют влияние активного элемента на свойства резонатора.  [c.173]

Возбуждение в активном резонаторе того или иного типа колебаний определяется выполнением порогового условия генерации (1.1). Различные типы колебаний характеризуются разной величиной дифракционных потерь, разным положением резонансных частот в спектральном контуре усиления. Поля собственных волн резонатора по-разному согласуются с пространственным распределением усиления в активной среде. Все эти обстоятельства создают неодинаковые условия для возбуждения различных мод и ограничивают модовый состав излучения конкретного активного резонатора. На возбуждение типов колебаний существенно влияют эффекты межмодовой конкуренции.  [c.15]

Отражение света, происходящее из-за нелинейности среды и пространственного периодического изменения амплитуды поля, позволяет расширить наши представления о воз1 южных способах реализации положительной обратной связи в квантовых генераторах. До сих пор мы полагали, что положительная обратная связь между полем излучения и активной средой, необходимая для превращения усиливающей системы в автоколебательную (см. 225), осуществляется с помощью зеркал, отражающих волны обратно в резонатор. Рассмотренное выше нелинейное отражение света служит физической основой для иного способа реализации положительной обратной связи, применяющегося в некоторых лазерах. Пусть кювета К представляет собой активную среду (см. рис. 41.3). В направлении оси л имеет место периодическая неоднородность среды за счет нелинейных эффектов. Интерферирующими пучками / и //, создающими оптическуро неоднородность, могут быть пучки возбуждающего излучения. Следовательно, в данном случае отражение будет происходить в результате модуляции коэффициента усиления активной среды. Спонтанное излучение среды, испущенное в направлении оси х, будет отражаться от неоднородности и возвращаться в активную среду, что и соответствует обратной связи. Для некоторых частот обратная связь будет положительной, и при выполнении пороговых условий возбудится генерация излучения в направлении оси х.  [c.828]

При наличии инверсной населенности уровней энергии 2 и i активной среды ( 2> i), т. е. при выполнении условия N2lg2>N)gi (Ni, Nu 2, g — населенности н кратности вырождения уровней 2, i) вынужденное излучение превалирует над поглощением и свет с резонансной частотой ш = 2— i/h усиливается при прохождении через среду. Усиленный таким образом свет люминесценции активной среды называют излучением сверхлюминесценции. Для возникновения генерации вводят положительную обратную связь, располагая активную среду в оптическом резонаторе, который в простейшем случае представляет собой два параллельных зеркала. Одно из зеркал резонатора делается полупрозрачным для частичного вывода излучения. Пространственное распределение поля генерируемого излучения соответствует собственным колебаниям резонатора, называемым модами. Различают продольные и поперечные моды, относящиеся к распределению поля вдоль оси резонатора и в плоскости, перпендикулярной оси. Искусственное снижение добротности резонатора позволяет достичь значительного коэффициента усиления активной среды без возникновения генерации. Последующее быстрое включение добротности приводит к генерации мощных световых импульсов малой длительности (гигантских импульсов).  [c.895]

Др. возможность состоит в том, что возмущение растёт всюду, в т. ч. в месте его появления. Это — а б с. неусто11Чивость, существующая благодаря наличию внутренних обратных связей, распределённых по всей активной системе. Примером может служить электронная лампа обратной волны, в к-рой возмущения, усиленные электронным потоком, переносятся эл.-магн. полями в обратном направлении, подвергаясь многократному усилению. Конечно, в большинстве реальных систем чёткое разделение конвективных и абс. неустойчивостей оказывается невозможным так, распределённый усилитель превращается в генератор при добавлении внешней обратной связи, если замкнуть этот усилитель в кольцо (соединить выход со входом) или ввести отражатели (зеркала), принуждающие возмущения многократно проводить через одни и те же участки активной среды. Так устроены лазеры, гиротроны и др. приборы с активными средами внутри резонаторов сходным образом водут себя упругие пластинки, обтекаемые потоком воздуха (флатторная неустойчивость), и др.  [c.327]

После включения накачки, удовлетворяющей условию (5), генерируемая мощность начинает нарастать, но не беспредельно. Эл.-магн. поле в резонаторе может достичь такого значения, когда скорость индуцированных переходов будет превосходить скорость заселения уровня за счёт накачки. При этом ДЛ п козф. усиления с ростом интенсивности поля в резонаторе начинают уменьшаться н а с ы п( а т ь с я). Для мн. активных сред зависимость от интенсивности / лтожно описать ф-лой  [c.547]


Оптический резонатор. До снх пор зеркалам отводилась лишь роль отражателей, возвращающих часть излучения обратно в активную среду. Однако система зеркал обладает резонансными свойствами и поле в ней может возбуждаться только на определ. резонансных (собственных) частотах Шр или вблизи них в малсм интервале Дыр, наз. полосой пропускания резонатора (подробнее см. в ст. Оптический резонатор). Если Дшр > Дм,, то всё вышесказанное справедливо, т. к.  [c.547]

Осп. элемент Л. м.— усилитель яркости, к-рый уже давно и ншроко используется в лазерах и представляет там собой к.-л. активную среду, помещённую в оитич. резонатор. Пучок света, многократао пробегая между зеркалами, усиливается до тех пор, пока не наступает насыщение усиливающей среды. Структура выходного пучка лазера полностью определяется резонатором обычно стараются ограничить число генерируемых мод до одной с нродельно малой дифракционной расходимостью. В оптических же приборах, в т. ч. в Л. м., обычно требуется передать большой объём информации, заложенный в распределении амплитуд и фаз по полю зрения. Т. о., пучки света, распространяющиеся в оптич. системе, должны иметь значит, размеры. Чтобы пропустить такие пучки, УЯ должен иметь достаточную угл. апертуру.  [c.559]

Оптические реперы. Используемые в СВЧ-диапазоне методы получения узких спектральных линий оказались не применимыми в оптич. области спектра (доплеровское уширение мало в СВЧ-диапазоне). Для О. с. ч. важны методы, н-рые позволяют получать резонансы в центре спектральной линии. Это даёт возможность непосредственно связать частоту излучения с частотой квантового перехода. Перспективны три метода метод насыщенного поглощения, двухфотонного резонанса и метод разнесённых оптич. полей. Осн. результаты по стабилизации частоты лазеров получены с помощью метода насыщенного поглощения, к-рый основан на нелинейном взаимодействии встречных световых волн с газом. Нелинейно поглощающая ячейка с газом низкого давления может находиться внутри резонатора лазера (активный репер) и вне его (пассивный репер). Из-за эффекта насыщения (выравнивание населённостей уровней частиц газа в сильном поле) в центре доплеровски-уширен-ной линии поглощения возникает провал с однородной шириной, к-рая может быть в 10 —10 раз меньше доплеровской ширины. В случае внутренней поглощающей ячейки уменьшение поглощения в центре линии приводит к появлению узкого пика на контуре зависимости мощности от частоты генерации. Ширина нелинейного резонанса в молекулярном газе низкого давления определяется прежде всего столкновениями и эффектами, обусловленными конечным временем пролёта части-  [c.451]

Обнаруженная в межзвёздной среде и ставшая эфф. средством исследования космич. пространства Р. в. 21 см нашла также важное земное применение. На её основе разработаны т. я. активные квантовые стандарты частоты. Для создания достаточной интенсивности Р. в, 21 см в земных условиях используют вынужденное испускание фотонов атомами водорода. Из источника, в к-ром под влиянием электрич, разряда при низком давлении происходит диссоциация молекулярного водорода, вылетает иучок атомов водорода. В сортирующем устройстве с помощью магн. поля пропеходит сортировка атомов возбуждённые атомы поступают в кварцевую камеру, находящуюся в объёмном резонаторе, настроенном на частоту линии 21 см, а яевозбуждёнпые — отклоняются в сторону. При достаточной плотности потока атомов, поступающих в камеру, в резонаторе возникает самовозбуждающаяся генерация на частоте Р. в. 21 см (подробнее см. Водородный генератор). Ширина Р. в. 21 см в таком водородном генераторе всего 1 Гц, По этой причине квантовый стандарт частоты, работающий на Р. в. 21 см, имеет высокую точность. В радиоастрономии этот стандарт как наиб, стабильный используется в качестве гетеродина в системах радиоинтерферометрии со сверхдлинными базами.  [c.216]

Бнерация сверхкоротких импульсов. Для генерации СКИ в лазерах используют процесс синхронизации продольных мод резонатора лазера. Для синхронизации мод применяются пассивные и активные методы связывания фаз продольных мод лазера. При одинаковой фазе, навязанной всем продольным модам лазера, синфазное сложение амплитуд электрич, полей приводит к генерации СКИ, длительность к-рых ограничена шириной спектра генерации. В неодимовых лазерах, к-рые обычно используют в Ф. с., достигается генерация СКИ длительностью 10" — 10 с при помещении в оптич. резонатор лазера насыщающихся органич. красителей—для пассивной синхронизации мод, а также акустооптич. и эл.-оптич. модуляторов света—для активной синхронизации мод. В методе активной синхронизации мод сфазирование отдельных продольных мод осуществляется с помощью помещаемого внутрь резонатора модулятора для управления потерями резонатора внеш. периодич. сигналом с частотой, равной или кратной частотному интервалу между продольными модами резонатора лазера [3 ].  [c.280]

Чтобы объяснить такую зависимость мощности от частоты, рассмотрим экспериментальную ситуацию, показанную на рис. 5.21, когда насыщение в активной среде, вызванное полем лазерного излучения, регистрируется пробным пучком малой интенсивности (т. е. ненасыщающим), который распространяется под небольшим углом к оси резонатора (ср. с рис. 2.15). Начнем рассмотрение со случая, когда частота генерации лазера  [c.275]

Механизм, приводящий к ухудшению направленности излучения в подобных случаях, был изучен в [50,43]. Оказалось, что при введении в телескопический резонатор частично отражающей плоской пластинки появляются паразитные моды, которым соответствуют замкнутые траектории лучей, причем на одно отражение от этой пластинки приходится много проходов по активной среде. Поэтому паразитные моды даже при совсем мало отражающей пластинке имеют более низкие пороги возбуждения, чем основная мода двухзеркального резонатора. Поскольку этим модам, кроме того, присуща высокая неравномерность распределения поля, возбуждаются сразу несколько из них со всеми вытекающими отсюда печальными последствиями. И неудивительно в 2.5 мы сталкивались с тем, что наличие даже ничтожно слабой сходящей волны, порожденной краевой дифракцией, приводит к вырождению мод по потерям. Поэтому предпринимаемые иногда попытки повлиять на режим генерации (в частности, понизить его порог) путем установки в резонатор элементов, иници-  [c.211]

В отличие от методов кинетических уравнений, приведенных выше, при более строгом анализе работы лазера необходимо учитывать, что под действием электромагнитного поля внутри его резонатора атомы активной среды начинают осциллировать подобно микродиполям. Эти диполи создают макроскопическую поляризацию Р, численно равную электрическому моменту единицы объема активной среды. Макроскопический дипольный момент действует как источник излучения, т. е. возбуждает собственное электромагнитное поле, приводящее к изменению электромагнитного поля в резонаторе. Таким образом, в результате взаимодействия электромагнитного поля и среды внутри резонатора устанавливается самосогласованное электромагнитное поле. Самосогласованную теорию лазеров можно строить двумя методами 1) полуклассическим — взаимодействие электромагнитного поля со средой описывается уравнениями классической электродинамики 2) квантово-механическим — взаимодействие описывается квантово-механическими уравнениями (в этих методах среда описывается уравнениями квантовой механики). Первый метод является менее строгим, например, с его помощью нельзя учесть шумы лазера, статистические свойства света и рассмотреть эффекты спонтанного излучения, определяющие условия в начале генерации лазеров. Однако в целом ряде задач этот метод является основным для качественного и количественного анализа работы лазера.  [c.22]



Смотреть страницы где упоминается термин Поле в активном резонаторе : [c.231]    [c.98]    [c.171]    [c.90]    [c.161]    [c.495]    [c.795]    [c.286]    [c.245]    [c.415]    [c.320]    [c.549]    [c.239]    [c.422]    [c.422]    [c.532]    [c.195]    [c.91]    [c.92]   
Смотреть главы в:

Введение в физику лазеров  -> Поле в активном резонаторе


Введение в физику лазеров (1978) -- [ c.228 ]



ПОИСК



Резонатор активный

Резонаторы

Согласование поля устойчивого резонатора с активной средой



© 2025 Mash-xxl.info Реклама на сайте