Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стохастичность глобальная

Приведенные примеры можно продолжить им полностью посвящена последняя глава. А сейчас постараемся дать общий ответ, в чем причина стохастического поведения рассмотренных систем, каковы основные общие условия его возникновения. Как уже отмечалось, при устойчивости генерация стохастичности невозможна. Это обусловлено тем, что при устойчивости установившимися движениями могут быть только устойчивые состояния равновесия и устойчивые периодические движения. В этих случаях даже при случайности начального условия в дальнейшем со временем случайность исчезает, так как плотность вероятностей в пределе при оо обращается в нуль всюду вне состояния равновесия или вне замкнутой кривой, отвечающей периодическому движению. В случае периодического движения некоторый след от случайности начального условия все же остается в виде случайности фазы периодических колебаний. Но при этом вероятностное описание этой фазы зависит от распределения вероятностей начального условия и им определяется. Таким образом, для генерации стохастичности необходима локальная неустойчивость при общей ограниченности движений, лри некотором глобальном сжатии или, во всяком случае, отсутствии расширения.  [c.73]


Свойства динамической системы, например наличие в ней диссипации энергии, также можно связывать со свойством сжимаемости. Такого рода связи тоже достаточно прочно ощущаются. Совершенно иная ситуация возникает, как только наряду со сжатием появляется растяжение. Именно с такими не только сжимающими, но и растягивающими отображениями неразрывно связана стохастичность в динамических системах. Как уже говорилось, стохастичность — следствие глобального сжатия при локальной неустойчивости.  [c.125]

Существует значительное различие между стохастичностью в системах с двумя и большим числом степеней свободы. Используя топологические соображения, Арнольд [12] показал ), что для систем с более чем двумя степенями свободы стохастические слои связаны между собой и образуют в фазовом пространстве плотную паутину . Для начальных условий на этой паутине стохастическое движение идет вдоль слоев, приводя к глобальной диффузии, не ограниченной инвариантными поверхностями. Этот механизм принято называть диффузией Арнольда. Она может быть быстрой или медленной в зависимости от толщины стохастических слоев. Такая диффузия существует (в принципе) для сколь угодно малых возмущений интегрируемых систем. Еще один интересный эффект в многомерных системах связан с медленной модуляцией одного из периодических движений ). В этом случае стохастическое движение вдоль паутины может значительно усиливаться за счет так называемой модуляционной диффузии. Этот механизм противоречит интуитивному представлению о том, что медленная модуляция должна приводить к адиабатическому поведению ). В многомерных системах резонансы могут значительно влиять на диффузию также  [c.18]

ПЕРЕХОД К ГЛОБАЛЬНОЙ СТОХАСТИЧНОСТИ  [c.244]

Переход к глобальной стохастичности  [c.245]

Рис. 4.1. Переход от локальной к глобальной стохастичности с ростом возмущения (1/ц ). Рис. 4.1. Переход от локальной к глобальной стохастичности с ростом возмущения (1/ц ).
Как мы уже видели в задаче об ускорении Ферми ( 3.4), граница стохастичности ) отделяет сплошную стохастическую компоненту при малых скоростях частицы от области со стохастическими слоями вблизи сепаратрис резонансов при больших скоростях (см. рис. 4.1, 1.14, и 3.15). Эта граница отличается от границы устойчивости 5, ниже которой все неподвижные точки соответствующего отображения неустойчивы. Оказывается, что откуда следует, что неустойчивость неподвижных точек достаточна, но не необходима для глобальной стохастичности, т. е. это условие является слишком сильным. Мы же ищем более эффективный критерий, которой был бы и необходимым, и достаточным. К сожалению, чисто аналитического метода получения такого критерия не существует. Поэтому приходится прибегать к различным правдоподобным рассуждениям, подкрепленным численными экспериментами. В этой главе мы рассмотрим пять методов, описанных качественно в п. 4.1а, каждый из которых дает свой вклад в понимание рассматриваемой проблемы. В качестве модели для иллюстрации этих методов мы используем стандартное отображение, свойства которого обсуждаются в п. 4.16.  [c.246]


Первый критерий перехода к глобальной стохастичности, предложенный Чириковым [67] и позднее усовершенствованный им [70], известен сейчас как критерий перекрытия. В своей простейшей форме он постулирует, что последняя инвариантная поверхность между двумя резонансами разрушается, когда невозмущенные сепаратрисы этих резонансов касаются друг друга. Действительно, интуитивно ясно, что касание стохастических слоев, которые, как мы знаем, окружают сепаратрисы, должно приводить к разрушению всех инвариантных поверхностей в этой области. Строго говоря, критерий перекрытия не является ни необходимым, ни достаточным. С одной стороны, последняя инвариантная поверхность может разрушаться значительно раньше перекрытия рассматриваемых резонансов за счет взаимодействия других резонансов между ними. С другой стороны, возмущение может так исказить сепаратрисы, что они фактически не будут перекрываться вопреки предсказаниям по первому приближению. Фактически численное моделирование показывает, что критерий перекрытия является  [c.246]

Если система имеет более чем две степени свободы, то резкой границы стохастичности уже не существует. Это связано с тем, что все стохастические слои резонансных сепаратрис в фазовом пространстве связаны между собой. Возникающая при этом диффузия Арнольда является, вообще говоря, очень медленной по сравнению с диффузией в областях глобальной стохастичности. Поэтому в практическом отношении понятие границы стохастичности остается содержательным и для многомерных систем.  [c.249]

В этом параграфе, следуя работе Чирикова [70], мы получим весьма эфс )ективный количественный критерий перехода к глобальной стохастичности. Сначала, используя гамильтониан стандартного отображения, мы найдем условие касания сепаратрис целых резонансов, что приведет к простейшему критерию перекрытия /С л /4 2,47. Далее, учтем полуцелый резонанс и найдем более точное критическое значение К 1,46. Это уже гораздо ближе к численному результату [70], но все еще остается завышенным. Наконец, учтем ширину стохастического слоя вблизи сепаратрисы. (Чириков нашел, что резонансы третьей гармоники несущественны )). Для этого исследуем перекрытие вторичных резонансов вблизи сепаратрисы целого резонанса. Это может быть сделано либо путем перехода от сепаратрисного отображения ( 3.5) к новому стандартному отображению, как в п. 4.16 выше, либо путем непосредственного вычисления размера вторичных резонансов вблизи сепаратрисы, как в п. 4.36 ниже. Однако для получения точного условия перекрытия вторичных резонансов необходимо ввести те же поправки, что и для первичных и т. д. Можно ожидать, что такой процесс сходится и дает правильный ответ. Вместо проведения соответствующих довольно утомительных выкладок Чириков замыкает процедуру, вводя в отображение для вторичных резонансов некоторый корректирующий множитель ). Это позволяет согласовать аналитические и численные результаты.  [c.257]

Этот критерий означает, что ширина целого резонанса плюс ширина его стохастического слоя плюс ширина полуцелого резонанса равна расстоянию между центрами двух целых резонансов. Для получения критического значения К, определяющего границу глобальной стохастичности, нужно решить уравнение (4.2.29) с из (4.2.23). В результате находим АГ = 1,2. С помощью дополнительных эвристических соображений ) Чириков [70 ] получил К 1,06. Подробное численное исследование стандартного отображения [70] дало в качестве верхней границы близкое значение К яг 0,99. В 4.4 будет показано, что более тонкий критерий стохастичности приводит к значению К 0,9716.  [c.262]

Рассмотрим развитый Грином [164, 165] метод, который позволяет найти точную границу перехода к глобальной стохастичности. Этот метод постулирует соответствие между двумя следующими свойствами системы (рис. 4.7) 1) разрушение инвариантной кривой с иррациональным числом вращения а и 2) потеря устойчивости периодических точек, число вращения которых r/s -у а при s -> оо (г, s — взаимно простые числа).  [c.269]

Выбираем последовательность подходящих дробей а = = / / , сходящуюся к некоторому иррациональному числу а, которое соответствует исследуемой инвариантной кривой. Если мы интересуемся переходом к глобальной стохастичности, то в некоторых системах, как, например, стандартное отображение, в качестве а выбираем золотое сечение (а = а ).  [c.274]


Перейдем теперь к описанию метода [117, 118], позволяющего исследовать разрушение инвариантных кривых между двумя произвольными резонансами. Этот метод основан на изучении структуры фазовой плоскости вблизи инвариантной кривой на все более мелком масштабе. При правильном выборе исследуемой инвариантной кривой можно определить таким путем переход к сильной (или глобальной ) стохастичности.  [c.279]

В табл. 4.2 сравниваются различные критерии перехода от локальной к глобальной стохастичности для стандартного отображения. Критерии расположены в порядке возрастания их эффективности. Поскольку не существует полной аналитической теории перехода к стохастичности, то чем эффективнее критерий, тем более существен в нем элемент численного анализа, необходимого для получения критического значения К- Поэтому все критерии представлены также через более физическую характеристику — число вращения о = lQй для целого резонанса ), которое легко определяется как численно, так и аналитически. Тот факт, что переход к глобальной стохастичности почти точно совпадает с о = 1/6, может помочь более глубокому пониманию этого явления. Для стандартного отображения критерий ао = 1/6 приводит с помощью (4.1.31) к критическому значению параметра перекрытия  [c.288]

В области глобальной стохастичности, где не существует ограничивающих движение инвариантных поверхностей, полное описание динамики системы, как правило, невозможно. В этом случае, однако, можно использовать статистическое описание и исследовать эволюцию средних величин, а не отдельных траекторий [62, 424]. Такой подход лежит в основе статистической механики (см., например, [327]).  [c.290]

Однако в действительности реальные системы обладают существенно более сложными движениями. Опишем их в краткой форме на примере ангармонического осциллятора, в котором стохастичность возникает под действием внешнего периодического возмущения (гл. 4). Гамильтонов характер системы предполагает четное число переменных (в примере с осциллятором их две). По одной из них (фазе О) происходит быстрый процесс перемешивания с характерным временем Тс. По второй (действию I) идет медленный процесс диффузии с характерным временем тв. Таким образом, возникают, вообще говоря, два масштаба универсальности глобальной динамики универсальность динамических систем ио процессам перемешивания, если их Я-энтроиии одинаковы (на временах Тс), и универсальность по процессам диффузионной релаксации, если эти процессы имеют одинаковый коэффициент диффузии (на временах Тс). Естественно, что, например, две динамические системы могут быть изоморфными относительно перемешивания и неизоморфными относительно диффузии.  [c.219]

Для слабо возмущенных систем с двумя степенями свободы тонкие стохастические слои отделены друг от друга инвариантными поверхностями, а стохастические колебания переменных действия внутри слоя оказываются экспоненциально малыми (по возмущению). С увеличением возмущения возможен переход, при котором изолирующие инвариантные поверхности разрушаются и стохастические слои сливаются, приводя к глобальному стохастическому движению. Фазовое пространство можно разделить при этом на три области. Одна из них содержит в основном стохастические траектории. Она связана ) со второй областью, значительную часть которой составляет по-прежнему стохастическая компонента движения, но внутри ее уже имеются большие острова регулярного движения. Третья область содержит главным образом регулярные траектории и отделена от первых двух инвариантными поверхностями. Классический пример, иллюстрирующий переход от почти регулярного к существенно стохастическому движению, был предложен Хеноном и Хейлесом [188] для моделирования динамики в задаче трех тел-). Численные эксперименты и связанные с ними эвристические теории, развитые за последние двадцать лет, прояснили основные процессы и позволили определить величину возмущения, при которой происходит такой переход. Эти результаты иллюстрируются в гл. 3 на примере ускорения Ферми, первоначально предложенного для объяснения происхождения космических лучей. Рассматривается модель, в которой упругий шарик колеблется между неподвижной и вибрирующей стенками. Далее, в гл. 4, определяются условия перехода от локализованной стохастичности к глобальной. При этом используются различные подходы к задаче (см., например, [70, 1651).  [c.16]

В 4.7 приводится сравнение различных критериев перехода к глобальной стохастичности и обсуждаются особенности их практического использования. Подчеркивается, что простой критерий перекрытия дает оценку только по порядку величины, по его легко применять в самых разных задачах. В качестве более эффективного критерия в некоторых новых задачах можно отказаться от сложных вычислительных процедур и прямо использовать уже полученные решения, например результат Грина для стандартного отображения, или вычисления Эсканде и Довейла. Все эти критерии приводят к правилу двух третей , которое является достаточно эффективным и удобным для использования ). Более подробное обсуждение возможностей различных критериев стохастичности и обширную библиографию можно найти в обзорах Чирикова [70] и Табора [401].  [c.249]

ДЛЯ вычисления квазиклассических колебательных уровней энергии многоатомных молекул [332, 333, 329]. Персиваль [331 ] также использовал этот метод при нахождении перехода к глобальной стохастичности для стандартного отображения. Он получил, что инвариантная кривая с а = а2 разрушается при К = 0,9716. При этом критерием разрушения служила расходимость итераций для коэффициентов Фурье. Хотя полученное им значение К находится в прекрасном согласии с результатом Грина, Персиваль отмечает, что расходимость итераций может объясняться и появлением резонансных знаменателей. Подроб1юсти этих исследований можно найти в цитированных выше работах.  [c.288]



Смотреть страницы где упоминается термин Стохастичность глобальная : [c.525]    [c.74]    [c.63]    [c.69]    [c.70]    [c.246]    [c.247]    [c.251]    [c.254]    [c.254]    [c.338]   
Регулярная и стохастическая динамика (0) -- [ c.70 , c.71 , c.194 , c.215 , c.246 , c.248 , c.249 , c.254 , c.290 ]



ПОИСК



Переход к глобальной стохастичности

Стохастичность



© 2025 Mash-xxl.info Реклама на сайте