Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переход к глобальной стохастичности

ПЕРЕХОД К ГЛОБАЛЬНОЙ СТОХАСТИЧНОСТИ  [c.244]

Переход к глобальной стохастичности  [c.245]

Первый критерий перехода к глобальной стохастичности, предложенный Чириковым [67] и позднее усовершенствованный им [70], известен сейчас как критерий перекрытия. В своей простейшей форме он постулирует, что последняя инвариантная поверхность между двумя резонансами разрушается, когда невозмущенные сепаратрисы этих резонансов касаются друг друга. Действительно, интуитивно ясно, что касание стохастических слоев, которые, как мы знаем, окружают сепаратрисы, должно приводить к разрушению всех инвариантных поверхностей в этой области. Строго говоря, критерий перекрытия не является ни необходимым, ни достаточным. С одной стороны, последняя инвариантная поверхность может разрушаться значительно раньше перекрытия рассматриваемых резонансов за счет взаимодействия других резонансов между ними. С другой стороны, возмущение может так исказить сепаратрисы, что они фактически не будут перекрываться вопреки предсказаниям по первому приближению. Фактически численное моделирование показывает, что критерий перекрытия является  [c.246]


В этом параграфе, следуя работе Чирикова [70], мы получим весьма эфс )ективный количественный критерий перехода к глобальной стохастичности. Сначала, используя гамильтониан стандартного отображения, мы найдем условие касания сепаратрис целых резонансов, что приведет к простейшему критерию перекрытия /С л /4 2,47. Далее, учтем полуцелый резонанс и найдем более точное критическое значение К 1,46. Это уже гораздо ближе к численному результату [70], но все еще остается завышенным. Наконец, учтем ширину стохастического слоя вблизи сепаратрисы. (Чириков нашел, что резонансы третьей гармоники несущественны )). Для этого исследуем перекрытие вторичных резонансов вблизи сепаратрисы целого резонанса. Это может быть сделано либо путем перехода от сепаратрисного отображения ( 3.5) к новому стандартному отображению, как в п. 4.16 выше, либо путем непосредственного вычисления размера вторичных резонансов вблизи сепаратрисы, как в п. 4.36 ниже. Однако для получения точного условия перекрытия вторичных резонансов необходимо ввести те же поправки, что и для первичных и т. д. Можно ожидать, что такой процесс сходится и дает правильный ответ. Вместо проведения соответствующих довольно утомительных выкладок Чириков замыкает процедуру, вводя в отображение для вторичных резонансов некоторый корректирующий множитель ). Это позволяет согласовать аналитические и численные результаты.  [c.257]

Рассмотрим развитый Грином [164, 165] метод, который позволяет найти точную границу перехода к глобальной стохастичности. Этот метод постулирует соответствие между двумя следующими свойствами системы (рис. 4.7) 1) разрушение инвариантной кривой с иррациональным числом вращения а и 2) потеря устойчивости периодических точек, число вращения которых r/s -у а при s -> оо (г, s — взаимно простые числа).  [c.269]

Выбираем последовательность подходящих дробей а = = / / , сходящуюся к некоторому иррациональному числу а, которое соответствует исследуемой инвариантной кривой. Если мы интересуемся переходом к глобальной стохастичности, то в некоторых системах, как, например, стандартное отображение, в качестве а выбираем золотое сечение (а = а ).  [c.274]

В табл. 4.2 сравниваются различные критерии перехода от локальной к глобальной стохастичности для стандартного отображения. Критерии расположены в порядке возрастания их эффективности. Поскольку не существует полной аналитической теории перехода к стохастичности, то чем эффективнее критерий, тем более существен в нем элемент численного анализа, необходимого для получения критического значения К- Поэтому все критерии представлены также через более физическую характеристику — число вращения о = lQй для целого резонанса ), которое легко определяется как численно, так и аналитически. Тот факт, что переход к глобальной стохастичности почти точно совпадает с о = 1/6, может помочь более глубокому пониманию этого явления. Для стандартного отображения критерий ао = 1/6 приводит с помощью (4.1.31) к критическому значению параметра перекрытия  [c.288]


Рис. 4.1. Переход от локальной к глобальной стохастичности с ростом возмущения (1/ц ). Рис. 4.1. Переход от локальной к <a href="/info/365661">глобальной стохастичности</a> с ростом возмущения (1/ц ).
Перейдем теперь к описанию метода [117, 118], позволяющего исследовать разрушение инвариантных кривых между двумя произвольными резонансами. Этот метод основан на изучении структуры фазовой плоскости вблизи инвариантной кривой на все более мелком масштабе. При правильном выборе исследуемой инвариантной кривой можно определить таким путем переход к сильной (или глобальной ) стохастичности.  [c.279]

В 4.7 приводится сравнение различных критериев перехода к глобальной стохастичности и обсуждаются особенности их практического использования. Подчеркивается, что простой критерий перекрытия дает оценку только по порядку величины, по его легко применять в самых разных задачах. В качестве более эффективного критерия в некоторых новых задачах можно отказаться от сложных вычислительных процедур и прямо использовать уже полученные решения, например результат Грина для стандартного отображения, или вычисления Эсканде и Довейла. Все эти критерии приводят к правилу двух третей , которое является достаточно эффективным и удобным для использования ). Более подробное обсуждение возможностей различных критериев стохастичности и обширную библиографию можно найти в обзорах Чирикова [70] и Табора [401].  [c.249]

ДЛЯ вычисления квазиклассических колебательных уровней энергии многоатомных молекул [332, 333, 329]. Персиваль [331 ] также использовал этот метод при нахождении перехода к глобальной стохастичности для стандартного отображения. Он получил, что инвариантная кривая с а = а2 разрушается при К = 0,9716. При этом критерием разрушения служила расходимость итераций для коэффициентов Фурье. Хотя полученное им значение К находится в прекрасном согласии с результатом Грина, Персиваль отмечает, что расходимость итераций может объясняться и появлением резонансных знаменателей. Подроб1юсти этих исследований можно найти в цитированных выше работах.  [c.288]

Для слабо возмущенных систем с двумя степенями свободы тонкие стохастические слои отделены друг от друга инвариантными поверхностями, а стохастические колебания переменных действия внутри слоя оказываются экспоненциально малыми (по возмущению). С увеличением возмущения возможен переход, при котором изолирующие инвариантные поверхности разрушаются и стохастические слои сливаются, приводя к глобальному стохастическому движению. Фазовое пространство можно разделить при этом на три области. Одна из них содержит в основном стохастические траектории. Она связана ) со второй областью, значительную часть которой составляет по-прежнему стохастическая компонента движения, но внутри ее уже имеются большие острова регулярного движения. Третья область содержит главным образом регулярные траектории и отделена от первых двух инвариантными поверхностями. Классический пример, иллюстрирующий переход от почти регулярного к существенно стохастическому движению, был предложен Хеноном и Хейлесом [188] для моделирования динамики в задаче трех тел-). Численные эксперименты и связанные с ними эвристические теории, развитые за последние двадцать лет, прояснили основные процессы и позволили определить величину возмущения, при которой происходит такой переход. Эти результаты иллюстрируются в гл. 3 на примере ускорения Ферми, первоначально предложенного для объяснения происхождения космических лучей. Рассматривается модель, в которой упругий шарик колеблется между неподвижной и вибрирующей стенками. Далее, в гл. 4, определяются условия перехода от локализованной стохастичности к глобальной. При этом используются различные подходы к задаче (см., например, [70, 1651).  [c.16]



Смотреть страницы где упоминается термин Переход к глобальной стохастичности : [c.246]    [c.491]    [c.254]    [c.457]   
Смотреть главы в:

Регулярная и стохастическая динамика  -> Переход к глобальной стохастичности



ПОИСК



Стохастичность

Стохастичность глобальная



© 2025 Mash-xxl.info Реклама на сайте