Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Время атомное среднее

Найденный результат чрезвычайно важен для многих разделов атомной физики. Мы грубо оценили среднее время жизни атома по отношению к процессам излучения. Последнее обстоятельство весьма существенно, так как в дальнейшем мы увидим, что среднее время жизни атома в возбужденном состоянии может определяться и другими причинами, например столкновениями. Конечно, к исследованию атомных систем, содержащих громадное число излучающих атомов, нужно подходить лишь с позиций статистической физики более того, корректное описание излуче-  [c.61]


Для разделения эталона времени — среднего тропического года — на равные части, кроме часов с маятником, сейчас применяют другие типы часов, например кварцевые часы, в которых периодическим процессом служат упругие колебания пластинки, вырезанной из пьезоэлектрического кристалла кварца (эти колебания поддерживаются при помощи схемы с электронными лампами). В последнее время были созданы молекулярные и атомные часы, в которых используются периодические колебания, происходящие в атомах или молекулах чтобы число этих колебаний можно было считать (с помощью специальных электрических устройств), выбирают такие колебания, которым соответствуют спектральные линии, лежащие в области радиоволн ).  [c.20]

Работа выхода различна для различных металлов и составляет обычно несколько электрон-вольт. Например, красная граница фотоэффекта (в длинах волн) равна для калия, натрия и меди 551 543 и 277 нм, что соответствует работам выхода 2,25 2,28 и 4,48 эВ. Время запаздывания при фотоэффекте на основании изложенных представлений равно времени движения электронов до поверхности металла после столкновения с фотоном, т. е. чрезвычайно мало и находится в согласии с экспериментом. Если бы фотоэффект объяснялся постепенной раскачкой электронов электрическим полем волны, то время запаздывания было бы чрезвычайно большим. Для того чтобы преодолеть силы, удерживающие его в металле, электрон должен накопить энергию, равную работе выхода А. Если средняя плотность потока энергии световой волны <5), а эффективная площадь, на которой поглощается энергия световой волны, сообщаемая электрону, Сзф, то в течение времени At электрону сообщается энергия Д и, следовательно, время запаздывания равно А л А/(азф<5)). Эффективная площадь Сзф имеет порядок квадрата атомных размеров. Для условий эксперимента А и (S ) имеют такие значения, что время запаздывания оказывается чрезвычайно большим. Например, для А = 1 эВ азф=10-2°м = 10-3 Вт/м получаем Л/ 10" с.  [c.22]

Мюонные атомы имеют конечное время жизни, определяемое временем жизни х -мюона ( 2,2 мкс). Обычно наряду с мюоном в атомной оболочке присутствуют и электроны, но их роль пренебрежимо мала, потому что мюон в среднем находится значительно ближе к ядру, чем электроны. После захвата -мюона на сравнительно дальнюю орбиту (возбужденное состояние) мюонные атомы переходят в основное состояние с испусканием квантов электромагнитного излучения или безызлучательно с выбросом электронов из оболочки атома.  [c.197]


Из-за статистического характера квантовых процессов микромира наблюдения в ядерной физике всегда носят статистический характер. Зарегистрировав один распад нестабильной частицы, мы ничего не узнаем о том, какое время проживет Другая такая же частица. И только пронаблюдав 10 ООО распадов, мы определим среднее время жизни таких частиц с точностью до 1%. Это не значит, однако, что в ядерной физике нельзя делать очень точных измерений. Более того, в гл. VI, 6 мы узнаем, что одно из самых точных измерений человек сделал именно в физике атомного ядра.  [c.29]

Со времени выхода в свет первого издания учебника Гидравлика и насосы для учащихся энергетических и энергостроительных техникумов прошло 8 лет. За этот период на тепловых и атомных электрических станциях в значительной степени изменился состав гидравлического оборудования. Вместе с тем за истекшее время появились и развились новые тенденции в методике изложения для учащихся техникумов как традиционной гидравлики, так и прикладной ее части, в том числе, в применении к настоящей книге,— насосов. Совершенствования методического плана учтены учебно-методическим кабинетом по среднему специальному образованию Минэнерго СССР и отражены в переработанной программе предмета Гидравлика и насосы .  [c.3]

За время 9 атом производит в среднем один перескок, перемещаясь в решетке на одно атомное расстояние а. Поэтому средняя скорость поступательного движения атомов по решетке (скорость блуждания )  [c.25]

В последнее время наблюдается тенденция к снижению запасов по материалам и компонентам конструкций. Причина состоит, по-видимому, в общем повышении уровня технологии и контроля качества, что приводит к большей однородности конструкционных материалов и почти полному исключению дефектов, которые могут повлечь за собой последствия аварийного характера. Еще одна причина — усовершенствование методов расчета уточнение расчетных схем, рассмотрение большего числа расчетных случаев и т. п. Это особенно заметно в расчетах на безопасность по отношению к воздействиям, среднее время повторения которых имеет порядок срока службы конструкции или существенно его превышает. Так, нормы расчета оборудования и трубопроводов первого контура атомных реакторов электростанций на сейсмические воздействия предусматривают повышение допускаемых напряжений по сравне- нию с номинальными допускаемыми напряжениями в расчетах на нормальные условия эксплуатации. При этом допускаемые напряжения приближаются к пределу текучести материала (точнее, к браковочному минимуму, установленному стандартами и контролируемому заводами-производителями). Необходимый уровень безопасности по отношению к сейсмическим воздействиям обеспечен надлежащим выбором экстремального расчетного землетрясения, т. е. уровнем расчетных нагрузок.  [c.225]

Пусть g — среднее увеличение числа нейтронов при захвате одного нейтрона. Тогда увеличение мощности реактора в 1 сек., если исключить поглощающую нейтроны контрольную аппаратуру, выражается как При =0,1 и У=0,001 сек. имеем = е " = — астрономическое число. Но если У=0,1 то имеем всего е =е =2,7.— вполне приемлемую величину, позволяющую осуществлять регулирование работы реактора. Отношение V g называется периодом реактора Т. При 1/=0,001 сек. и =0,1 имеем Г=У/ =0,0001. В этом случае реактор не поддается контролю (атомные бомбы, в которых среднее время жизни нейтронов деления меньше 0,001 сек.). Чтобы иметь возможность управлять ядерным реактором, нужно, чтобы его период превышал 0,1 сек.  [c.129]

Законы рассеяния рентгеновских лучей, электронов и нейтронов существенно различны. Рентгеновские лучи рассеиваются только электронами атома, электроны — электрическими полями электронов атома и атомных ядер, а нейтроны, не имеющие электрического заряда, рассеиваются только под действием ядерных сил. Амплитуды рентгеновских лучей, рассеянных атома яи элемента с атомным номером г, примерно пропорциональны Для разных углов рассеяния зависимость амплитуды рассеянных электронов от атомного номера различна, но в среднем амплитуда примерно пропорциональна т. е. зависит от атомного номера рассеивающего элемента в меньшей мере, чем амплитуда рассеянных рентгеновских лучей. Эффективные сечения рассеяния электронов — величины того же порядка, что и действительные сечения атомов, а абсолютные амплитуды рассеяния на 2—3 порядка превышают абсолютные амплитуды рассеяния рентгеновских лучей. Благодаря этому в рассеянии участвуют только тончайшие слои вещества (практически толщиной 10 —Ю" м), в то время как рентгеновскую интерференционную картину дают обычно слои толщиной 10 —10 м. В рассеянии тепловых нейтронов участвуют слои толщиной в несколько миллиметров и даже сантиметров [93, 75].,  [c.64]


Географическое размещение атомных электростанций в настоящее время связывается с непропорциональным размещением энергетических ресурсов страны — органического топлива и гидравлических источников энергии на Востоке и наиболее емкими потребителями электрической энергии в европейской части. Основной зоной сооружения атомных электрических станций прежде всего является европейская территория СССР, где ввиду дороговизны органического топлива себестоимость электроэнергии в 2—2,5 раза выше, чем в Сибири, Средней Азии и Казахстане.  [c.45]

Но водный транспорт обладает и недостатками, ограничивающими его использование. Это извилистость пути (у речного транспорта), удлиняющая расстояние между конечными пунктами, небольшая скорость движения судов и сезонность работы. В зимние месяцы, когда водные пути покрыты льдом, судоходство прекращается. На южных реках навигация в среднем продолжается 240—270 дней, на северных — 120—150 дней. На некоторых реках судоходство прерывается из-за мелководья, наступающего в конце лета. Для увеличения навигационного периода и для поддержания судоходства в зимнее время на морских и речных путях применяют ледокольный флот. За последние годы он пополнился первым в мире атомным судном-ледоколом Ленин мощностью 44 тыс. л. с. и тремя дизельными ледоколами мощностью по 26 тыс. л. с.  [c.10]

Ионизирующее излучение — электромагнитное или корпускулярное излучение (например, альфа-, бета-, гамма-, рентгеновское, нейтронное), способное при взаимодействии с веществом прямо или косвенно создавать в нем заряженные атомы и молекулы — ионы. Радиоактивные излучения — ионизирующие излучения, испускаемые ядрами радиоактивных изотопов. Радиоактивность — самопроизвольное превращение атомных ядер химических элементов, сопровождающееся испусканием радиоактивных излучений. Изотопы — атомы одного и того же химического элемента, ядра которого имеют одинаковый заряд, но разные массовые числа. Период полураспада — время, в течение которого в среднем распадается половина из имевшихся первоначально радиоактивных атомов изотопа.  [c.18]

Экспериментально установлено, что полосы скольжения отстоят одна от другой в среднем на расстоянии около 1 мкм, в то время как расстояния между соседними атомными плоскостями выражаются цифрами порядка 1 10 мкм.  [c.16]

Щель спектроскопа помещается в Ог и через нее перпендикулярно Сх проходит свет, излучаемый атомами на отрезке атомного пучка, заключенного между х п х dx. При смещении спектроскопа параллельно Сх наблюдается экспоненциальное уменьшение интенсивности Нр-излучения, по закону I = = /оехр(—Кх), при К= 138 м . /о — интенсивность пучка при выходе из катода. Рассчитайте среднее время жизни т атомов водорода в возбужденном состоянии, т. е. время, требующееся для уменьшения интенсивности излучения в 1/е раз от ее первоначальной величины. Найдите естественную ширину линии Нр, предполагая, что время жизни нижнего уровня намного больше времени жизни возбужденного состояния.  [c.344]

Одно время в среднем один раз в два года физиками синтезировался новый трансурановый химический элемент. В основном эта работа проводилась американскими учеными, но в последние полтора десятилетия больших успехов добились в СССР . После синтезирования в 1964 году курчатовия (Z = 104) в Дубне были синтезированы в 1970 году нильсборий Z = 105), а в 1974 году — элемент с атомным номером 106. Очевидно, что получение новых трансурановых элементов заметно замедляется. Это связано с тем, что уже ядра природных радиоактивных элементов являются весьма неустойчивыми. Следовательно, не удивительно, что трансурановые элементы обладают еще большей неустойчивостью и их все труднее и труднее получать в заметных количествах. Хотя нептуний-239 и плутоний-239 производят в современных ядерных реакторах тоннами, многие другие трансурановые элементы имеются лишь в незначительных количествах, а некоторые были синтезированы лишь в единичных случаях. Конечно, производство трансурановых элементов зависит в некоторой степени от спроса на них как уже говорилось выше, потенциальные свойства калифорния-252 могут со временем привести к его массовому производству для нужд медицины. Но продолжающиеся попытки синтеза новых трансурановых элементов не только вызваны поисками новых полезных веществ. Существует интригующая возможность добраться в этих поисках до острова устойчивости — синтезировать сверхтяжелые элементы, содержащие магическое количество протонов или нейтронов в атомном ядре. Как мы знаем, ядра, содержащие нейтроны или протоны в количествах 2, 8, 20, 50, 82 и 126, исключительно устойчивы (см. стр. 41). Современная теория атомного ядра предсказывает наличие и больших магических чисел , а в этом случае мы попадаем в область трансурановых элементов. В частности, такими устойчивыми ядрами, чей период полураспада оценивается примерно в 1 миллион лет, явля-  [c.129]

Сл( довательно, энергия ЛМс равна сумме кинетических энергий частиц, возникающих в процессе распада. Это соогношение играет важную роль в ядерной физике, указывая источник энергии при процессах деления ядер. В то же время если М (т f f- m2), то реакция может идти в противоположном направлении, обеспечивая термоядерный синтез. Соотношение (7.32) показывает, какая громадная энергия сосредоточена в атомном ядре. Если исходить из среднего значения дефекта масс, примерно равного 0,006 единицы массы на один нуклон, то окажется, что при объединении этих частиц и ядре выделяется энергия, достигающая около 6 МэВ на один нуклон, что в несколько миллионов раз больше энергии обьпгных химических реакций (1 — 2 эВ на атом водорода).  [c.382]

Замечательная особенность рассмотренного (так называемого допплеровского) механизма возникновения немонохроматичности и частичной когерентности состоит в том, что время когерентности определяется только температурой газа, средней частотой излучения и атомным весом. Для газа с атомным весом 100 и Г я 300 К находим значение длины когерентности  [c.103]


В последние десятилетия наряду с традиционными материалами появились новые искусственные материалы — так называемые композиты. Строго говоря, термин композитный материал или композит следовало бы относить ко всем гетерогенным материалам, состоящим из двух или большего числа фаз. Сюда относятся практически все сплавы, применяемые для изготовления элементов конструкций, несущих нагрузку. Соединение хаотически ориентированных зерен пластичного металла и второй более прочной, но хрупкой фазы позволяет в известной мере регулировать свойства конечного продукта, т. е. получать материал с необходимой прочностью и достаточной пластичностью. Усилиями металлургов созданы прочные сплавы на основе железа, алюминия, титана, содержащие различные. тегирующие добавки. Достигнутый к настоящему времени предел прочности составляет примерно 150 кгс/мм для сталей, 50 кгс/мм для алюминиевых сплавов, 100 кгс/мм для титановых сплавов. Эти цифры относятся к материалам, из которых можно путем механической обработки получать изделия разнообразной формы. Теоретический предел прочности атомной решетки металла, представляющий собою верхнюю границу того, к чему можно в идеале стремиться, по разным моделям оценивается по-разному, в среднем это 1/10—1/15 от модуля упругости материала. Так, для железа теоретическая прочность оценивается значением примерно 1400 кгс/мм что в десять раз выше названной для сплава на железной основе цифры. В настоящее время существуют способы получепия тонкой металлической проволоки или ленты с прочностью порядка 400—500 кгс/мм , что составляет около одной трети теоретической прочности. Однако применение таких проволок пли лент в конструктивных элементах неизбежным образом ограничено.  [c.683]

Если исключить среднюю компоненту, то четыре остающихся обнаруживают две постоянные разности волновых чисел Av = 0,203 и 0,395 см и легко объясняются расщеплением каждого из термов 6 и 5 на два, откуда следует IДля того чтобы объяснить наличие пятой лишней" компоненты, Шюлер и Брюк в совместной работе сделали предположение, что у некоторых из шести изотопов кадмия ядерный момент /=72 в то время как остальная часть не имеет моментов, отличных от нуля, и, следовательно, дает простую линию. Такое предположение оправдывается и на остальных линиях d. Атомные веса изотопов кадмия равны ПО, 111, 112, 113 и 116. Остается решить, каким из этих изотопов приписать I а аким —  [c.529]

Исследование конденсаторов, изготовленных из керамических материалов, подобных тем, из которых делают катушки для точных проволочных сопротивлений [54], показывает, что изменения таких диэлектрических характеристик, как коэффициент рассеяния и сопротивление изоляции, незначительны при потоках тепловых нейтронов 2,7-10 нейтрон I см сек), надтепловых 4-10 нейтронI см" сек) и быстрых 3,9-10 нейтрон I см сек). Общая интегральная доза у-облучения в этом опыте составляла 2,4-10 зргЫ. До облучения средняя величина электросопротивления керамических материалов составляла 10 ом. Во время облучения сопротивление снизилось до 10 ом, а после облучения полностью восстановилось. Результаты показывают, что подобные изменения в окиси алюминия могут нанести ущерб лишь сопротивлениям с номиналами более 1 Мом. Незначительные остаточные нарушения, наблюдаемые в керамических материалах, вероятно, связаны с атомными смещениями.  [c.398]

По результатам электронно-микроскопических исследований рассчитаны размеры карбидов в стали Х.18Н10Т, выделившихся во время выдержек при 650° С до 5000 ч (рис. 3). Как видно из графика (см. рис. 3), с увеличением степени деформирования от 0,2 до 5% скорость роста частиц повышается. Средняя рассчитанная линейная скорость роста частиц составляет 2-10 мкм/ч. Кроме того, сложность решетки карбида МгзСб по сравнению с простой решеткой аустенита определяет высокое поверхностное натяжение на межфазной границе и большую энергию образования двумерных зародышей это также замедляет скорость роста частиц. Полученные результаты подтверждают целесообразность многокомпонентного легирования даже при сравнительно невысокой рабочей температуре жаропрочного сплава. При увеличении времени изотермической выдержки до 5000 ч укрупнение карбидных частиц происходит с меньшей скоростью и составляет 1 10 ° мкм/ч, или для приращения одного атомного слоя в карбидной частице требуется выдержка 100 ч при 650° С. По-видимому, это характеризует самую высокую степень стабильности, наблюдаю-  [c.61]

На этом о оновании сделано предположение, что в зависимости от того, располагает ли данная страна крупными, средними или малыми запасами органического топлива, доля атомной энергии в общем приросте производства электроэнергии составит /з, V2 или 2/з соответственно. Возможно, это предположение спорно, однако прошлая практика его подтверждает. Многие страны, богатые ресурсами органического топлива, тем не менее внедряют у себя ядерную энергетику. В то же время страны, не обладающие топливными ресурсами, не стремятся иметь в приросте электроэнергетической мощности долю АЭС, превышающую % суммарной выработки электроэнергии, поскольку это ведет к необ-  [c.94]

В работе /i/ рассмотрены элементарные акты процесса рааруше-вия на атомном уровне, дано вероятностное описание этих процессов и получено кинетическое уравнение процесса разрушения твердых тел для любого режима нагружения. Среднее время до разрушения при произвольном законе изменения напряжения определяется из соотношения  [c.25]

Интересным является вопрос о том, действительно ли в аморфных сплавах реализуется условие Нагеля—Тауца или нет. Ферми-евское волновое число можно непосредственно измерить в экспериментах по комптоновскому рассеянию и аннигиляции позитронов. Кроме того, если можно воспользоваться моделью свободных электронов, то кр можно рассчитать из величины концентрации валентных электронов на атом е/а) и атомного объема. К сожалению, аморфные сплавы, как правило, содержат большое число компонентов, наиболее важные из которых—переходные металлы, имеющие г -зону. Для них разделение внутренних и внешних валентных электронов неоднозначно, поэтому затруднено и определение kw по результатам комптоновского рассеяния и аннигиляции позитронов. Интересно, что поскольку у-переходных и благородных металлов число валентных электронов Z=e/a меньше 2, то сплавлением их с поливалентными элементами, у которых Z—e/a больше 2, можно в конечном счете получить среднее число валентных электронов 2=2. В настоящее время почти не проводят непосредственные измерения kw в аморфных сплавах, содержащих переходные  [c.204]

Далее, если мы деформируем мягкую сталь за предел текучести и затем перед обратным нагружением дадим ей отдохнуть , мы обнаружим, что предел текучести повысится, и тем больше, чем продолжительнее отдых . Это явление старения, о котором мы говорили выше. Старение в этом смысле слова можно ускорить нагреванием до небольших температур, примерно до 300° С, но не выше, при этом эффект Баушингера исчезает. В этом состоит явление отжига стали, упрочненной за счет деформации. Оно может быть объяснено тем, что внутренние поверхности разрыва затягиваются, и термин старение здесь не совсем подходит. Разрыв происходит вследствие того, что расстояния между атомами по обе стороны от поверхности увеличиваются настолько, что они выходят за пределы действия сил атомного притяжения. Благодаря же тепловой энергии тела каждый атом находится в состоянии постоянных колебаний, амплитуда которых определяется температурой. Если амплитуда колебаний достаточно велика, то атом по одну сторону от поверхности разрыва может войти в область притяжения атома по другую сторону поверхности и произойдет соединение по поверхности разрыва. Таким образом, разрывы затягиваются. Этот процесс будет происходить и при обычной температуре (хотя и более медленно), поскольку колебания будут другой амплитуды, но статистически они будут распределены около некоторого среднего значения, и время от времени какая-либо необычно большая амплитуда будет осуществлять связь, и будет происходить местное затягивание разрыва. Когда же температура поднимается выше 300° С, колебания становятся настолько сильными, что они не только затягивают разрывы, но атомы при этом перестраиваются в более устойчивую кристаллическую решетку. В этом состоит процесс рекристаллизации кристаллы увеличиваются в размерах, и предел текучести понижается вплоть до полного исчезновения упрочнения. Происходит отжиг упрочнившейся стали.  [c.337]


Обычно время t при оценке риска исчисляют в годах. В этом случае h (i) имеет смысл годового риска. Введем также средний годовой риск h (Т) = Н (Т)1Т. Пусть, например, h = onst = = 10-5 1/Род. 7 = 50 лет. Тогда Я (Т) = 0,5-Ю , S (Т) = 0,9995. Показатели риска типа Я (t), h (f) и h (t) широко используют в гражданской авиации [61, 124]. В последние годы их начали применять при нормировании безопасности оборудования атомных электростанций [85].  [c.220]

Из спектров видно, что среднее время жизни позитронов в нанопорошке существенно превышает таковое в поликристалле. В спектре крупнокристаллического образца карбида ванадия присутствует только короткий компонент 157 =Ь 2 не, который соответствует аннигиляции позитронов в структурной вакансии углеродной подрешетки [137,138]. Количественный анализ спектра порошкового образца показал, что в нем наряду с коротким компонентом, равной 157 =Ь 2 не, присутствует длинный компонент 500 ПС с относительной интенсивностью /2 = 7%. Согласно [136] длинный комнонент обусловлен аннигиляцией позитронов в дефектах на поверхности частиц. Захват позитронов структурной вакансией означает отсутствие диффузии позитрона на большие расстояния в этом случае интенсивности комнонент пропорциональны объемным долям фаз, содержаш их дефекты разного типа. Таким образом, величина относительной интенсивности длинного компонента I2 совпадает с объемной долей поверхности AVqob = D-S/V в нанопорошке карбида ванадия. Оценка показывает, что поверхностный слой имеет толш ину AD от 0,5 до 0,7 нм и соответствует 3-4 атомным монослоям.  [c.60]

За исключением реакций п, а) Н и Со (п, я) А , значительное количество радиоактивных ядер получается по этому типу реакций. Этот тип реакций особенно полезен для получения малого количества вещества, например для химического изучения. Другие реакции на быстрых нейтронах, как, например (п, 2>г), не имеют значения с производственной точки зрения. Кроме использования реакции (п, /)для пенных реакций на мед.ленных нейтронах 1г. для атомной бомбы, реакция (п, /) приводит к огромному количеству радиоактивных ядер. Сюда относятся изотогшс э.лементов из средней части периодической системы от Zn до Ей. Полный перечень радиоактивных ядер, получаемых по этой реакции, и их относительные выходы были опубликованы [21]. То.лько (гебольшое число продуктов деления изготовляется в настоящее время [2]. Трудность выделения короткоживущих продуктов распада, связанная с необходимостью быстро выделить очень сложные коми.лексные химические смеси, при наличии интенсивного излучения, мешает практическому распространению короткоживущих продуктов распада.  [c.257]

За последнее время (напоминаем, что статья написана в 1910 году. — Ред.) Рамзай и Грей пришли почти к тому же результату путем прямого взвешивания определенного объема эманации, заключенного в капиллярную кварцевую трубочку. Любопытен по своей тонкости экспериментальный прием, избранный ими для этой цели. Для взвешивания служили особые микровесы, целиком изготовленные из кварца. Чувствительность их достигала /боо ООО миллиграмма, а наибольшее количество взвешиваемой эманации занимало объем не более 0,1 мм . Самое взвешивание происходило без помощи разновесок. Взвешиваемое тело (кварцевый капилляр, содержапщй эманацию) уравновешивалось одним и тем же полым кварцевым шариком, в котором было заключено некоторое количество воздуха. Вес этого шарика (кажущийся) менялся в зависимости от давления воздуха в приборе... Плотность эманации в среднем из ряда опытов была найдена равной 111,5, что соответствует молекулярному весу 223. Принимая во внимание, что эманация по своим свойствам должна быть причислена к индифферентным (в оригинале — идеальным видимо, опечатка. — Ред.) газам нулевой группы, молекула которых всегда состоит из одного только атома, заключаем, что и атомный  [c.26]

По Полани и Цвикки и по теории атомной решетки, молекулярное сопротивление разрыву, например, для кристалла каменной соли должно составлять примерно среднего значения модуля упругости этого вещ ества т. е. около 2—4-10 кг см , в то время как в действительности каменная соль становится пластичной уже при напряжении около 20 кг см и разрушается при напряжении порядка 50 кг1см .  [c.79]

Одноатомный мазер. Эти мазеры удивительны, так как они работают в режиме генерации даже в том случае, когда среднее число атомов в резонаторе меньше единицы. Принципиальная схема экспе-эиментального устройства одноатомного мазера в Гархинге, показаная на рис. 1.13, достаточно проста разреженный пучок ридберговских атомов, приготовленных с помощью лазера, проходит через высокодобротный микроволновой резонатор. Когда частота поля находится в резонансе с атомным переходом, атом может вложить своё возбуждение в полевую моду. Следующий атом взаимодействует уже с этим модифицированным полем и может также передать своё возбуждение. Если время затухания поля в полости велико по сравнению с временем пролёта атомов и характерным временем внутренней динамики, поле в полости может возрастать.  [c.33]

Хотя энтропии образования металлических сплавов обычно определяются с невысокой точностью, именно энтропия является наиболее чувствительным параметром к изменению атомной или электронной структуры сплава. Любые уклонения от беспорядочного распределения атомов, т. е. наличие ближнего или дальнего порядка типа упорядочения или расслоения, может лишь понижать идеальную энтропию смешения. В то же время для многих сплавов переходных металлов энтропии смешения гораздо больше идеальных, что свидетельствует о наличии неконфигурационных вкладов в энтропию — колебательного, электронного и магнитного, которые поддаются полуколичественной оценке, если известно изменение характеристической температуры бр, коэффициента электронной теплоемкости у и средних атомных магнитных моментов Цэф при образовании сплава  [c.153]

Включим тепорь в наш анализ взаимодействие поля излучения со всей активной средой. Для этого необходимо рассмотреть макроскопическую совокупность всех двухуровневых атохшых систем, содержащихся в активной среде. Так как мы не располагаем всеми возможными данными об активной среде и не намерены определять время, положение конкретной атомной системы в момент возбуждения, ее соответственные компоненты скоростей и т. д., то мы воспользуемся средними значениями указанных величин. Вследствие этого связать определенную волновую функцию с макроскопической системой мы не можем и матрица р приобретает характер матрицы плотности.  [c.235]


Смотреть страницы где упоминается термин Время атомное среднее : [c.188]    [c.198]    [c.27]    [c.77]    [c.119]    [c.347]    [c.80]    [c.146]    [c.67]    [c.14]    [c.33]    [c.689]    [c.388]    [c.60]    [c.332]    [c.308]    [c.76]   
Справочное руководство по небесной механике и астродинамике Изд.2 (1976) -- [ c.159 ]



ПОИСК



Атомный вес

Время атомное

Средние по времени



© 2025 Mash-xxl.info Реклама на сайте