Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа газового потока

Уравнение первого закона q = — Wi + / применительно к газовому потоку можно записать в другом виде. Рассмотрим баланс энергии газового потока, проходящего через канал под действием внешних сил давления. Работа газового потока I, связанная с изменением объема, расходуется в четырех направлениях на работу проталкивания 1 , которая затрачивается на преодоление действия внешних сил техническую работу 1 , которая совершается над внешним объектом на изменение внешней кинетической энергии потока зависящей от скорости движения, и изменение внешней потенциальной энергии потока зависящей от геометрической высоты.  [c.68]


РИС. 22. Располагаемая работа газового потока  [c.69]

РАБОТА ГАЗОВОГО ПОТОКА В ДЫМОГАРНЫХ ТРУБАХ  [c.100]

Для расчёта тепловой работы газового потока в дымогарных трубах имеются следующие уравнения  [c.100]

Работа газового потока в дымогарных трубах 100  [c.953]

Однако способу организации технологических процессов в псевдоожиженном слое при атмосферном давлении, естественно,, присущи также определенные недостатки. Прежде всего это ограниченная возможность интенсификации процесса за счет увеличения количества подаваемых в реакционную зону веществ из-за значительного выноса твердого материала с газовым потоком. Поэтому в системах с псевдоожиженным слоем в условиях атмосферного давления приходится работать с низкими объемными интенсивностями аппаратов.  [c.3]

При адиабатном процессе течения газов без совершения внешней работы, на основании первого закона термодинамики, полная энергия газового потока равна сумме полных энергий отдельных потоков, составляющих смесь [уравнение (13-3)1  [c.228]

Дробление капель в газовых потоках. Этот процесс исследовался как экспериментально [21, 48, 52, 67, 701, так и теоретически [5, 10, 16]. Различные аспекты обсуждаются в работах [7, 18, 47, 62]. Большой объем исследований по дроблению капель в ударных волнах выполнили А. А. Борисов, Б. Е. Гельфанд, С. А. Губин,  [c.260]

Переход на парожидкостный режим при докритических параметрах охладителя сопровождается повышением гидравлического сопротивления пористого материала вследствие увеличения объема паров охладителя. При этом пористая стенка начинает работать на устойчивом режиме парожидкостного охлаждения, но при увеличенном давлении охладителя. Температура же горячей стенки скачкообразно возрастает и в определенном диапазоне расходов охладителя остается постоянной (см. рис. 6.3). Постоянство температуры горячей стенки в некотором интервале расходов охладителя можно объяснить тем, что при истечении из пористой стенки парожидкостной смеси не вся жидкость участвует в ее охлаждении, часть жидкости в виде мельчайших капель по инерции проходит сквозь пограничный слой и уносится потоком горячего газа. По мере уменьшения расхода охладителя количество жидкости в парожидкостной смеси уменьшается, а граница раздела жидкость—пар перемещается внутрь стенки. Температура поверхности, соприкасающейся с горячим газом, остается постоянной, а температура стенки со стороны подачи охладителя возрастает и достигает температуры кипения. Этот момент характеризуется вторичным повышением гидравлического сопротивления пористого материала. Над пористой стенкой со стороны подачи охладителя образуется паровой слой. Система начинает работать на паровой режим охлаждения. При этом температура горячей поверхности стенки резко возрастает, что может привести к ее прогару. По мере повышения в газовом потоке давления область удельных расходов охладителя, где температура горячей стенки постоянна, сокращается и>за уменьшения скрытой теплоты парообразования (см. рис. 6.4).  [c.154]


Большинство реальных систем газ —твердые частицы является турбулентными, однако в ряде работ [731, 734, 735] рассматривается ламинарный пограничный слой на плоской пластине. Это позволяет математическими методами выявить некоторые важнейшие факторы, характеризующие взаимодействие такой системы с границей. По этой же причине исследуется ламинарный пограничный слой газа, хотя в промышленных установках газовые потоки являются, как правило, турбулентными. В данном разделе электростатические эффекты не рассматриваются (гл. 10).  [c.345]

Понятно, что энергия диссипации (е) в двухфазном потоке будет состоять из двух слагаемых. Одно из них обусловлено проявлением работы силы тяжести (е ), что характерно для гравитационного течения пленки жидкости в отсутствии газового потока. В данном случае эта работа осуществляется против силы тяжести. Она равна . = gll. . Таким образом, [ - диссипируемая энергия при течении пленки жидкости, которая компенсируется работой силы тяжести на единицу жидкой массы. Второе слагаемое связано с энергией, получаемой жидкостью от газового потока. При взаимодействии газового потока на поверхности глубокой воды эта величина равна Ё2 = gu [38]. Таким образом, 2 - диссипируемая в пленке жидкости энергия, которая компенсируется энергией, поставляемой жидкости воздушным потоком на единицу жидкой массы. Но при воздействии газового потока на тонкие слои жидкости она  [c.30]

Анализ работы различных типов завихрителей показал, что наименьший коэффициент гидравлического сопротивления имеют комбинированные завихрители, сочетающие тангенциальное и аксиальное направление газового потока. Кроме того, преимуществом завихрителей данного типа является возможность изменения интенсивности крутки потока в широких пределах. Применение комбинированных завихрителей позволяет увеличить максимальную производительность элементов по газу и тем самым расширить диапазон их эффективной работы.  [c.278]

Для надежной работы и повышения эффективности работы контактно-сепарационных элементов необходимо в каждом случае для конкретной конструкции проведение экспериментальных исследований распределения структуры газового потока. Несмотря на значительное количество исследований в этой области, движение газа в закрученном потоке носит весьма сложный характер и до настоящего времени изучено еще недостаточно полно.  [c.282]

Направленное движение газового потока из-под пластин повышает производительность тарелки и увеличивает время взаимодействия фаз, что наряду с двойной зоной контакта приводит к увеличению эффективности процесса массообмена между газом и жидкостью. Кроме того, падающая с верхней тарелки жидкость является одновременно и частичным сепаратором, поглощающим капли, разбрызгиваемые нижней тарелкой, что также позволяет повысить верхний предел работы тарелок.  [c.305]

Исследуем влияние трения на изменение параметров турбулентного газового потока в трубах постоянного диаметра. Для этого заменим работу силы трения в соотношении (6) общепринятым в гидравлике выражением  [c.184]

Расчет газовых потоков при помощи таблиц газодинамических функций получил широкое распространение и является в настоящее время общепринятым. Помимо сокращения вычислительной работы, преимуществом расчета с использованием газодинамических функций является значительное упрощение преобразований при совместном решении основных уравнений, что позволяет получать в общем виде решения весьма сложных задач. При таком расчете более четко выявляются основные качественные закономерности течения и связи между параметрами газового потока. Как можно будет видеть ниже, использование газодинамических функций позволяет вести расчет одномерных газовых течений с учетом сжимаемости практически так же просто, как ведется расчет течений несжимаемой жидкости.  [c.233]

Газовым эжектором называется аппарат, в котором полное давление газового потока увеличивается под действием струи другого, более высоконапорного потока. Передача энергии от одного потока к другому происходит путем их турбулентного смешения. Эжектор прост по конструкции, может работать в широком диапазоне изменения параметров газов, позволяет легко регулировать рабочий процесс и переходить с одного режима работы на другой. Поэтому эжекторы широко применяются в различных областях техники. В зависимости от назначения эжекторы выполняются различным образом.  [c.492]


Для течений при наличии сил трения уравнение (10.9) должно быть дополнено двумя членами один, учитывающий работу, расходуемую на преодоление сил трения — / р, другой, выражающий приращение теплоты в газовом потоке вследствие трения, —  [c.126]

В уравнении энергии (10.12) предпоследний член правой части отражает выделение теплоты вследствие торможения газового потока, а последний -- тепловыделение за счет работы сил давления, которая имеет место при наличии продольного градиента давления. Преобразуем уравнение энергии, заменив в этом уравнении гра-  [c.381]

Получение сверхзвуковых скоростей в сопле Лаваля является только одним из возможных способов ускорения газового потока. Л. А. Вулисом обоснованы также методы получения сверхзвуковых скоростей в цилиндрических каналах путем изменения расхода вдоль течения и путем подвода или отвода тепла. Основы этих методов изложены в работах [8, 16].  [c.430]

При создании разнообразных машин и аппаратов приходится встречаться с необходимостью ускорить газовый поток от нулевых или малых скоростей до сверхзвуковых. Из 4 известно, что этого можно достигнуть с помощью сопла Лаваля, схема которого показана на рис. 206, а. Здесь мы рассмотрим несколько более подробно режимы работы этого сопла и его элементарный расчет на основе одномерной теории.  [c.452]

В качестве органов управления можно использовать сравнительно простые по конструкции газовые рули, размещаемые в конце сопла основного двигателя (рис. 1.9.11, д). Отклонение струи газа, вызываемое рулями, приводит к созданию достаточно больших управляющих усилий. Их преимущество заключено в возможности создания путем дифференциального отклонения наряду с управляющими моментами тангажа и рыскания также и моментов крена. Положительным свойством газовых рулей является линейность их управляющего момента для сравнительно больших углов отклонения (до 20°). Однако газовые рули, являясь эффективным средством управления, обладают существенными недостатками. Оказывая значительное сопротивление газовому потоку, они уменьшают эффективную тягу (до Зч-5%). Кроме того, под воздействием высоких температур и больших скоростей газа рули выгорают. Это позволяет применять их лишь в условиях кратковременного режима работы.  [c.86]

Конкретный вид функции и зависит от сорта компонента и принятой схемы гомогенных и гетерогенных реакций. В данной работе считается, что газовой поток состоит из пяти компонентов (СО, О2, СО2, N2, Н2О в обозначениях величин им будут соответствовать индексы 1,2, 3, 4, 5), и используются кинетические схемы Л. А. Вулиса [461  [c.413]

Вместе с тем в высокоскоростных газовых потоках значителен и член оуа(г1У, являющийся частью работы ийр в таких случаях используют полное уравнение (12.5), но все члены относят к единице объема и единице времени  [c.266]

Смешение газовых потоков. Пусть п потоков с различными параметрами соединяются в один поток. При адиабатном течении газов без совершения внешней работы в соответствии с формулой (1.147) полная энергия потока газовой смеси равна сумме полных энергий по-  [c.51]

Аз рисунков видно, что наибольший разброс точек и наибольшие расхождения между экспериментальными и расчетными величинами наблюдаются в области малых чисел критерия Архимеда, ламинарной области течения газа, где расчетные соотношения должны быть наиболее адекватными. Возможные причины несоответствия экспериментальных данных, полученных различными авторами, рассмотрены в работах [18, 20 и др.]. Можно добавить лишь, что дисперсные материалы с широким гранулометрическим составом нсевдоожижаются при меньших скоростях газового потока, чем узкие фракции с тем же средним размером частиц, вследствие тенденции к снижению порозности полидисперсного слоя. В [35] отмечается, что скорость начала псевдоожижения, определяемая традиционным путем, как точка пересечения гори-  [c.45]

Дальнейшее увеличение количества частиц в газовом потоке повышает вероятность их стыкования в радиальном направлении и приводит к наращиванию плотности объемной решетки , доводя ее при максимальной концентрации до состояния фильтрующегося движущегося плотного слоя (рис. 8-1,d). Такой аэротранспорт имеет максимальную производительность (гиперфлоу). Перепад давления в подобных плотных дисперсных потоках расходуется лишь на трение частиц о стенки канала и на преодоление веса столба транспортируемого материала (восходящий слой). Следует указать и на промежуточную неустойчивую зону, в которой проскоки газа заполняют все поперечное сечение канала и разделяют компактные массы частиц на отдельные пробки материала (рис. 8-1,г). Эта схема аналогична поршневому режиму псевдоожижения. В наших опытах подобный режим возникал при неотрегулированной работе питающего устройства. По данным (Л. 188] частицы песка и алюминия транспортировались в вертикальном канале воздухом, СОг и гелием при j, = 254-f-2200 кг кг (р = — 0,13 м 1м ) лишь в пробковом режиме.  [c.249]

Решение задачи о характеристиках свободной струи, несущей твердые или капельно-жидкие примеси, с учетом описанной модели явления приведено в работе [5]. Сравнение расчета этих характеристик с экспериментальными данными [87] показало вполне удовлетворительную их сходимость. Согласно расчетам [5] запыленная струя становится уже и дально-бойнее не только тогда, когда в ней содержатся тяжелые примеси, но и тогда, когда чистая газовая струя распространяется в запыленном газовом потоке. Выше было отмечено, что если примесь не имеет начальной скорости (папрн.мер, когда газовая струя вытекает в спутный лоток газа большей плотности), то затухание скорости происходит быстре(, чем в незапы-ленном потоке, т. е. интенсивность расширения такой струи увеличивается с увеличением плотности спутного потока. Это кажущееся противоречие [5] объясняется тем, что в случае распространения газовой струи в запыленном потоке на степень расширения струи влияют два фактора с одной стороны, большая плотность окружающей среды, с увеличением которой степень расширения струи увеличивается, а с другой стороны, подавление турбулентности частицами, попадающими из внешнего потока в струю, которое с ростом концентрации частиц в потоке растет и, следовательно, уменьшает степень расширения струи. Согласно расчету, второй фактор оказывает более сильное влияние на степень расширения струи, чем плотность окружающей среды.  [c.317]


С произвольным распределением скорости жидкости в тангенциальном направлении, но без учета тангенциального ускорения частиц. Крайбел [4381 рассматривал эту задачу, полагая, что схема газового потока соответствует модели вращения твердого тела. Свободновихревое движение жидкости при одинаковой осевой скорости обеих фаз, но без учета изменений тангенциальной и радиальной скоростей частиц в осевом направлении исследовалось в работе [343]. Так как во всех этих работах рассчитывались только траектории частиц, то использовалась система координат Лагранжа, что само по себе исключительный случай в гидромеханике. Во всех этих исследованиях не учитывалось распределение плотности и скорости отложения частиц.  [c.339]

Отмеченные закономерности были учтены при выборе объекта для первого промышленного применения аэрозольного метода ингибирования коррозии газопроводов неочищенного сероводородсодержащего природного газа. Им стал газопровод Зеварды-Мубарекский газоперерабатывающий завод (протяженность — около 100 км диаметр — 1020 мм давление газа — 5,6 МПа скорость газового потока — около 1 м/с), в транспортируемом по нему газе содержится более 1% H2S и около 4% СО2. На газопроводе был произведен монтаж стационарной аэрозольной установки с форсункой, предложенной фирмой Se a (Франция). Установка работала в непрерывном режиме около года. Контроль эффективности ингибиторной защиты осуществляли периодически в течение 238 суток. Ингибирование проводили неразбавленным (100%-ная концентрация) ингибитором СЕКАНГАЗ с расходом 15 л/сут. Образцы-свидетели устанавливали на различных участках газопровода. Результаты длительных испытаний ингибитора свидетельствуют [146] не только о его высокой эффективности, но и об эффективности аэрозольного метода в целом. Толщина ингибиторной пленки в различное время и на разных участках газопровода составляла от 0,5 до 3,2 мкм. Скорость общей коррозии металла была очень низкой и изменялась от 0,0001 до 0,006 мм/год. Содержание водорода в металле находилось на уровне металлургического и не превышало 3 см /100 г. За время испытаний изменение пластических свойств металла зафиксировано не было.  [c.227]

В других работах [1, 46] исследование механизма массопереноса и его расчет в турбулентной пленке жидкости при наличии газового потока или поверхностного натяжения проведено на основе решения уравнений переноса количесз ва движения и массы с учетом входных эффектов и при условии, что турбулентный перенос изменяется по длине пленки жидкости, причем поверхность пленки жидкости является искомой величиной. Получено общее выражение для коэффициента массоотдачи  [c.29]

Анализ работы контактно-сепарационных устройств показал, что отбираемому расчетному количеству жидкости с элемента должно соответствовать определенное количество газа. Невыполнение этого условия приводит к повышенному уносу капельной жидкости с основным потоком газа или вторичному уносу жидкости с газом, выходящим из-под каплесъемника. Такая зависимость обусловливает необходимость выполнения канала для выхода жидкости из элемента переменного или регулируемого сечения [2] для возможности подачи расчетного количества жидкости в контактно-сепарационный элемент с учетом равновесной влаги в газовом потоке и унесенной капельной жидкости, а также коэффициента рециркуляции.  [c.276]

Способ и устройство, в котором пленку жидкости диспергируют до капель диаметром 100-400 мкм предложены в работе [4]. Это достигается тем, что в центробежном элементе (рис. 10.3, а) после завихрителя на полой балке, соединенной со стенками стакана и имеющей отверстие, размещен рассекатель (вытеснитель) в виде параболоида вращения, расширяющаяся часть которого направлена в сторону плен-косъемника. Рассекатель, являясь поверхностью, установленной по оси закрученного газового потока, формирует пленку жидкости, обеспечивает диспергирование ее газовым потоком (при срыве с кромки рассекателя) до узкой мелкодисперсной фракции - мельчайших капель ("тумана"), строго ориентирует образовавшийся газожидкостной поток, что способствует увеличению поверхности массопередачи, эффективному разделению проконтактировавших фаз, уменьшению уноса жидкости иа вышележащую ступень контакта. В результате все это повышает эффективность массообмена. А ориентация газо-жидкостной смеси в зазоре между стаканом и пленкосъемником снижает гидравлическое сопротивление.  [c.279]

Наличие плоских перекрывающих пластин обеспечивает в отличие от обычных трубчато-решетчатых тарелок работу тарелки без прямого провала жидкости, направленное движение контактирующих фаз на тарелке и двойную зону контакта жидкость, падающая с вышележащей тарелки, попадая на верхние перекрывающие пластины нижерасположенной тарелки, дробится на капли, которые образуют первую зону контакта фаз в межтарелочном пространстве. Далее, протекая в зазор между трубами, жидкость попадает на нижние пластины, где образует вторую зону контакта с газовым потоком уже в барботажном слое.  [c.304]

Вводя коэффициент сохранения полного давления, учитывающий гидравлические потери, а = Ра/Ри получим для энерго-изолированного газового потока (без теплообмена и механической работы) прямую связь между гидравличеокими потерями и (приростом энтропии  [c.50]

В теплоизолированном газовом потоке (йС нар = 0) без потерь dQsB 0) энтропия останется неизменной и при совершении механической работы, несмотря на то, что полное теплосодержание газа при этом изменяется  [c.50]

В тех случая, когда газовый поток содержит влагу (дисперснокольцевой режим) или жидкая пленка движется по наружной поверхности стенки канала, источник и детектор располагают по разные стороны стенки. По этому принципу работают измерители толщины покрытий, выпускаемые промышленностью.  [c.254]

Теплота, подведенная к газовому потоку, расходуется не только на изменение его внутренней энергии и совершение внешней работы, но и на увеличение кинетической энергии потока. Тогда для установившегося потока идеального газа с учетом скорости его перемещения первое начало терлюдинамики для массы газа в 1 кг имеет вид  [c.105]

В работах А. В. Лыкова (см. [25]) показано, что в ряде случаев применение граничных условий третьего рода для задач конвективного теплообмена инертных тел с инертными газовыми потоками приводит к отрицательности коэффициента а, что противоречит физическому смыслу этой величины. Иными словами, в этих случаях задачу конвективного теплообмена недопустимо решать в раздельной простановке, так как это приводит к парадоксальным результатам. Аналогичный вывод на основании анализа ряда задач механики реагирующих газов содержится в книгах [4, 26, 27]. Поэтому любую задачу механики реагирующих газов целесообразно первоначально ставить как сопряженную.  [c.215]


Смотреть страницы где упоминается термин Работа газового потока : [c.501]    [c.185]    [c.151]    [c.89]    [c.20]    [c.232]    [c.206]    [c.470]    [c.165]    [c.202]    [c.51]    [c.305]   
Технический справочник железнодорожника Том 6 (1952) -- [ c.0 ]



ПОИСК



Газовый поток—см. Поток газовый

Поток газовый

Работа потока



© 2025 Mash-xxl.info Реклама на сайте